Add files via upload

This commit is contained in:
David Rotermund 2023-07-28 00:11:46 +02:00 committed by GitHub
parent a564b10114
commit b346d947b1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 15 additions and 14 deletions

View file

@ -4,12 +4,13 @@ import matplotlib.pyplot as plt
import os import os
import glob import glob
from natsort import natsorted from natsort import natsorted
import sys
# import numpy as np # import numpy as np
layer_id: int = 3 layer_id: int = int(sys.argv[1])
scale_each_inner: bool = False scale_each_inner: bool = True
scale_each_outer: bool = False scale_each_outer: bool = True
model_path: str = "trained_models" model_path: str = "trained_models"
filename_list: list = natsorted(glob.glob(os.path.join(model_path, str("*.pt")))) filename_list: list = natsorted(glob.glob(os.path.join(model_path, str("*.pt"))))
@ -47,12 +48,12 @@ v_max_abs = torch.abs(weight_grid[0, ...]).max()
plt.subplot(3, 1, (1, 2)) plt.subplot(3, 1, (1, 2))
plt.imshow( plt.imshow(
weight_grid[0, ...], weight_grid[0, ...],
vmin=-v_max_abs, # vmin=-v_max_abs,
vmax=v_max_abs, # vmax=v_max_abs,
cmap="cool", cmap="hot",
) )
plt.axis("off") plt.axis("off")
plt.colorbar() #plt.colorbar()
plt.title("Weights") plt.title("Weights")
plt.subplot(3, 1, 3) plt.subplot(3, 1, 3)

View file

@ -6,8 +6,8 @@
], ],
"conv_kernel_size": [ "conv_kernel_size": [
11, 11,
7, 11,
15 11
], ],
"conv_stride_size": [ "conv_stride_size": [
1, 1,
@ -30,14 +30,14 @@
"l_relu_negative_slope": 0.1, // (0.1) "l_relu_negative_slope": 0.1, // (0.1)
// Pooling layer ----------------------------------------------------------- // Pooling layer -----------------------------------------------------------
"pooling_kernel_size": [ "pooling_kernel_size": [
3, 5,
0, 5,
0 5
], ],
"pooling_stride": [ "pooling_stride": [
2, 2,
0, 2,
0 2
], ],
"pooling_type": "max", // (max), average, none "pooling_type": "max", // (max), average, none
// Softmax layer ----------------------------------------------------------- // Softmax layer -----------------------------------------------------------