diff --git a/Classic_contour_net_shallow/classic_loop.sh b/Classic_contour_net_shallow/classic_loop.sh index b5aff3c..16cbbc2 100644 --- a/Classic_contour_net_shallow/classic_loop.sh +++ b/Classic_contour_net_shallow/classic_loop.sh @@ -2,7 +2,7 @@ Directory="/home/kk/Documents/Semester4/code/Classic_contour_net_shallow" Priority="-500" echo $Directory mkdir $Directory/argh_log_classic -for out_channels_idx in {0..0}; do +for out_channels_idx in {0..6}; do for kernel_size_idx in {0..0}; do for stride_idx in {0..0}; do echo "hostname; cd $Directory ; /home/kk/P3.10/bin/python3 cnn_training.py --idx-conv-out-channels-list $out_channels_idx --idx-conv-kernel-sizes $kernel_size_idx --idx-conv-stride-sizes $stride_idx -s \$JOB_ID" | qsub -o $Directory/argh_log_classic -j y -p $Priority -q gp4u,gp3u -N ClassicTraining diff --git a/Classic_contour_net_shallow/cnn_training.py b/Classic_contour_net_shallow/cnn_training.py index 953f7b9..9b7c707 100644 --- a/Classic_contour_net_shallow/cnn_training.py +++ b/Classic_contour_net_shallow/cnn_training.py @@ -29,8 +29,11 @@ def main( ) -> None: config_filenname = "config.json" with open(config_filenname, "r") as file_handle: - config = json.loads(jsmin(file_handle.read())) - + file_contents = file_handle.read() + f_contents = jsmin(file_contents) + config = json.loads(f_contents) + # config = json.loads(jsmin(file_handle.read())) + # get model information: output_channels = config["conv_out_channels_list"][idx_conv_out_channels_list] @@ -81,6 +84,7 @@ def main( use_adam=bool(config["use_adam"]), use_plot_intermediate=bool(config["use_plot_intermediate"]), leak_relu_negative_slope=float(config["leak_relu_negative_slope"]), + switch_leakyR_to_relu=bool(config["switch_leakyR_to_relu"]), scheduler_verbose=bool(config["scheduler_verbose"]), scheduler_factor=float(config["scheduler_factor"]), precision_100_percent=int(config["precision_100_percent"]), @@ -118,6 +122,7 @@ def run_network( use_adam: bool, use_plot_intermediate: bool, leak_relu_negative_slope: float, + switch_leakyR_to_relu: bool, scheduler_verbose: bool, scheduler_factor: float, precision_100_percent: int, @@ -129,6 +134,9 @@ def run_network( device: torch.device = torch.device(device_str) torch.set_default_dtype(torch.float32) + # switch to relu if using leaky relu + switched_to_relu: bool = False + # ------------------------------------------------------------------- logger.info("-==- START -==-") @@ -362,8 +370,19 @@ def run_network( # stop learning: done if round(previous_test_acc, precision_100_percent) == 100.0: - logger.info("100% test performance reached. Stop training.") - break + if activation_function == "leaky relu": + if switch_leakyR_to_relu and not switched_to_relu: + logger.info( + "100% test performance reached. Switching to LeakyReLU slope 0.0." + ) + for name, module in model.named_children(): + if isinstance(module, torch.nn.LeakyReLU): + module.negative_slope = 0.0 + logger.info(model) + switched_to_relu = True + else: + logger.info("100% test performance reached. Stop training.") + break if use_plot_intermediate: plot_intermediate( diff --git a/Classic_contour_net_shallow/config.json b/Classic_contour_net_shallow/config.json index 3a699fc..a21e226 100644 --- a/Classic_contour_net_shallow/config.json +++ b/Classic_contour_net_shallow/config.json @@ -19,6 +19,7 @@ "save_ever_x_epochs": 10, // (10) "activation_function": "leaky relu", // tanh, relu, (leaky relu), none "leak_relu_negative_slope": 0.1, // (0.1) + "switch_leakyR_to_relu": true, // LR Scheduler -> "use_scheduler": true, // (true), false "scheduler_verbose": true, @@ -34,11 +35,41 @@ "condition": "Coignless", "scale_data": 255.0, // (255.0), "conv_out_channels_list": [ + [ + 32, + 8, + 8 + ], + [ + 8, + 8, + 8 + ], + [ + 6, + 8, + 8 + ], + [ + 4, + 8, + 8 + ], [ 3, 8, 8 - ] + ], + [ + 2, + 8, + 8 + ], + [ + 1, + 8, + 8 + ] ], "conv_kernel_sizes": [ [ diff --git a/Classic_contour_net_shallow/functions/__pycache__/plot_intermediate.cpython-310.pyc b/Classic_contour_net_shallow/functions/__pycache__/plot_intermediate.cpython-310.pyc index 6d99565..ffd7247 100644 Binary files a/Classic_contour_net_shallow/functions/__pycache__/plot_intermediate.cpython-310.pyc and b/Classic_contour_net_shallow/functions/__pycache__/plot_intermediate.cpython-310.pyc differ diff --git a/Classic_contour_net_shallow/functions/plot_intermediate.py b/Classic_contour_net_shallow/functions/plot_intermediate.py index 14220a9..3b9e677 100644 --- a/Classic_contour_net_shallow/functions/plot_intermediate.py +++ b/Classic_contour_net_shallow/functions/plot_intermediate.py @@ -21,7 +21,9 @@ def plot_intermediate( assert len(train_accuracy) == len(test_losses) # legend: - pattern = r"(outChannels\[\d+(?:, \d+)*\]_kernelSize\[\d+(?:, \d+)*\]_)(\w+)(?=_stride)" + pattern = ( + r"(outChannels\[\d+(?:, \d+)*\]_kernelSize\[\d+(?:, \d+)*\]_)([^_]+)(?=_stride)" + ) matches = re.findall(pattern, save_name) legend_label = "".join(["".join(match) for match in matches]) @@ -35,8 +37,8 @@ def plot_intermediate( plt.figure(figsize=[12, 7]) plt.subplot(2, 1, 1) - plt.plot(x, np.array(train_accuracy), label="Train: " + str(legend_label)) - plt.plot(x, np.array(test_accuracy), label="Test: " + str(legend_label)) + plt.plot(x, np.array(train_accuracy), label="Train " + str(legend_label)) + plt.plot(x, np.array(test_accuracy), label="Test " + str(legend_label)) plt.title("Training and Testing Accuracy", fontsize=18) plt.xlabel("Epoch", fontsize=18) plt.ylabel("Accuracy (\\%)", fontsize=18) @@ -53,8 +55,8 @@ def plot_intermediate( # losses plt.subplot(2, 1, 2) - plt.plot(x, np.array(train_losses), label="Train: " + str(legend_label)) - plt.plot(x, np.array(test_losses), label="Test: " + str(legend_label)) + plt.plot(x, np.array(train_losses), label="Train " + str(legend_label)) + plt.plot(x, np.array(test_losses), label="Test " + str(legend_label)) plt.title("Training and Testing Losses", fontsize=18) plt.xlabel("Epoch", fontsize=18) plt.ylabel("Loss", fontsize=18) diff --git a/Classic_contour_net_shallow/inspect/plot_weights.py b/Classic_contour_net_shallow/inspect/plot_weights.py index 34aa127..5d8665a 100644 --- a/Classic_contour_net_shallow/inspect/plot_weights.py +++ b/Classic_contour_net_shallow/inspect/plot_weights.py @@ -13,7 +13,7 @@ from functions.make_cnn import make_cnn # noqa device = torch.device("cpu") # path to NN -nn = "ArghCNN_numConvLayers3_outChannels[6, 8, 8]_kernelSize[7, 15]_leaky relu_stride1_trainFirstConvLayerTrue_seed287302_Coignless_801Epoch_2807-0857.pt" +nn = "ArghCNN_numConvLayers3_outChannels[3, 8, 8]_kernelSize[7, 15]_leaky relu_stride1_trainFirstConvLayerTrue_seed290415_Coignless_1307Epoch_3107-0912.pt" PATH = f"../trained_models/{nn}" # load and evaluate model diff --git a/Classic_contour_net_shallow/inspect_weights_conv_x.py b/Classic_contour_net_shallow/inspect_weights_conv_x.py index cf99f67..a145f5f 100644 --- a/Classic_contour_net_shallow/inspect_weights_conv_x.py +++ b/Classic_contour_net_shallow/inspect_weights_conv_x.py @@ -4,12 +4,13 @@ import matplotlib.pyplot as plt import os import glob from natsort import natsorted +import sys # import numpy as np -layer_id: int = 3 -scale_each_inner: bool = False -scale_each_outer: bool = False +layer_id: int = int(sys.argv[1]) +scale_each_inner: bool = True +scale_each_outer: bool = True model_path: str = "trained_models" filename_list: list = natsorted(glob.glob(os.path.join(model_path, str("*.pt")))) @@ -47,12 +48,12 @@ v_max_abs = torch.abs(weight_grid[0, ...]).max() plt.subplot(3, 1, (1, 2)) plt.imshow( weight_grid[0, ...], - vmin=-v_max_abs, - vmax=v_max_abs, - cmap="cool", +# vmin=-v_max_abs, +# vmax=v_max_abs, + cmap="hot", ) plt.axis("off") -plt.colorbar() +#plt.colorbar() plt.title("Weights") plt.subplot(3, 1, 3) diff --git a/Classic_contour_net_shallow/performance_pfinkel_plots.py b/Classic_contour_net_shallow/performance_pfinkel_plots.py index c5c1b8b..d4385bd 100644 --- a/Classic_contour_net_shallow/performance_pfinkel_plots.py +++ b/Classic_contour_net_shallow/performance_pfinkel_plots.py @@ -132,7 +132,7 @@ if __name__ == "__main__": ) assert selection_file_id < len(list_filenames) # model_filename: str = str(list_filenames[selection_file_id]) - model_filename: str = "./trained_models/ArghCNN_numConvLayers3_outChannels[6, 8, 8]_kernelSize[7, 15]_leaky relu_stride1_trainFirstConvLayerTrue_seed287302_Coignless_801Epoch_2807-0857.pt" + model_filename: str = "./trained_models/ArghCNN_numConvLayers3_outChannels[3, 8, 8]_kernelSize[7, 15]_leaky relu_stride1_trainFirstConvLayerTrue_seed290415_Coignless_1307Epoch_3107-0912.pt" logger.info(f"Using model file: {model_filename}") # shorter saving name: