diff --git a/functions/make_cnn_v2.py b/functions/make_cnn_v2.py new file mode 100644 index 0000000..2dd09f3 --- /dev/null +++ b/functions/make_cnn_v2.py @@ -0,0 +1,310 @@ +import torch +import os +import numpy as np +import json +from jsmin import jsmin + +from functions.SoftmaxPower import SoftmaxPower + + +def make_cnn( + network_config_filename: str, + logger, + input_shape: torch.Size, +) -> torch.nn.Sequential: + with open(network_config_filename, "r") as file_handle: + network_config = json.loads(jsmin(file_handle.read())) + + # Convolution layer + conv_out_channel: list[int] = network_config["conv_out_channel"] + conv_kernel_size: list[int] = network_config["conv_kernel_size"] + conv_stride_size: list[int] = network_config["conv_stride_size"] + conv_bias: list[bool] = network_config["conv_bias"] + conv_padding: list[int | str] = network_config["conv_padding"] + + # Activation function + activation_function: str = str(network_config["activation_function"]) + l_relu_negative_slope: float = float(network_config["l_relu_negative_slope"]) + + # Pooling layer + pooling_kernel_size: list[int] = network_config["pooling_kernel_size"] + pooling_stride: list[int] = network_config["pooling_stride"] + pooling_type: str = str(network_config["pooling_type"]) + + # Softmax layer + softmax_enable: list[bool] = network_config["softmax_enable"] + softmax_power: float = network_config["softmax_power"] + softmax_meanmode: bool = network_config["softmax_meanmode"] + softmax_no_input_mode: bool = network_config["softmax_no_input_mode"] + + # Load pre-trained weights and biases + path_pretrained_weights_bias: str = str( + network_config["path_pretrained_weights_bias"] + ) + train_weights: list[bool] = network_config["train_weights"] + train_bias: list[bool] = network_config["train_bias"] + + # Output layer + number_of_classes: int = int(network_config["number_of_classes"]) + + assert len(conv_out_channel) == len(conv_kernel_size) + assert len(conv_out_channel) == len(conv_stride_size) + assert len(conv_out_channel) + 1 == len(conv_bias) + assert len(conv_out_channel) == len(conv_padding) + assert len(conv_out_channel) == len(pooling_kernel_size) + assert len(conv_out_channel) == len(pooling_stride) + assert len(conv_out_channel) + 1 == len(train_weights) + assert len(conv_out_channel) + 1 == len(train_bias) + assert len(conv_out_channel) == len(softmax_enable) + assert number_of_classes > 1 + + cnn = torch.nn.Sequential() + + temp_image: torch.Tensor = torch.zeros( + (1, *input_shape), dtype=torch.float32, device=torch.device("cpu") + ) + logger.info( + ( + f"Input shape: {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}" + ) + ) + layer_counter: int = 0 + + # Changing structure + for i in range(0, len(conv_out_channel)): + # Conv Layer + if i == 0: + in_channels: int = int(temp_image.shape[0]) + else: + in_channels = conv_out_channel[i - 1] + cnn.append( + torch.nn.Conv2d( + in_channels=int(in_channels), + out_channels=int(conv_out_channel[i]), + kernel_size=int(conv_kernel_size[i]), + stride=int(conv_stride_size[i]), + bias=bool(conv_bias[i]), + padding=conv_padding[i], + ) + ) + + # Load bias + if bool(conv_bias[i]) and bool(train_bias[i]) is False: + filename_load = os.path.join( + path_pretrained_weights_bias, str(f"bias_{i}.npy") + ) + logger.info(f"Replace bias in conv2d {i} with {filename_load}") + temp = np.load(filename_load) + assert torch.equal( + torch.Tensor(temp.shape), + torch.Tensor(cnn[-1]._parameters["bias"].shape), + ) + cnn[-1]._parameters["bias"] = torch.tensor( + temp, + dtype=cnn[-1]._parameters["bias"].dtype, + requires_grad=False, + device=cnn[-1]._parameters["bias"].device, + ) + + # Load weights + if train_weights[i] is False: + filename_load = os.path.join( + path_pretrained_weights_bias, str(f"weights_{i}.npy") + ) + logger.info(f"Replace weights in conv2d {i} with {filename_load}") + temp = np.load(filename_load) + assert torch.equal( + torch.Tensor(temp.shape), + torch.Tensor(cnn[-1]._parameters["weight"].shape), + ) + cnn[-1]._parameters["weight"] = torch.tensor( + temp, + dtype=cnn[-1]._parameters["weight"].dtype, + requires_grad=False, + device=cnn[-1]._parameters["weight"].device, + ) + + cnn[-1].train_bias = True + if bool(conv_bias[i]) and bool(train_bias[i]) is False: + cnn[-1].train_bias = False + + cnn[-1].train_weights = train_weights[i] + + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter} (Convolution 2D layer): {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights}, " + ) + ) + layer_counter += 1 + + # Activation Function + setting_understood = False + if activation_function.upper() == str("relu").upper(): + cnn.append(torch.nn.ReLU()) + setting_understood = True + elif activation_function.upper() == str("leaky relu").upper(): + cnn.append(torch.nn.LeakyReLU(negative_slope=l_relu_negative_slope)) + setting_understood = True + elif activation_function.upper() == str("tanh").upper(): + cnn.append(torch.nn.Tanh()) + setting_understood = True + elif activation_function.upper() == str("none").upper(): + setting_understood = True + + assert setting_understood + + cnn[-1].train_bias = False + cnn[-1].train_weights = False + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter} (Activation function): {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights} " + ) + ) + layer_counter += 1 + + if (pooling_kernel_size[i] > 0) and (pooling_stride[i] > 0): + setting_understood = False + if pooling_type.upper() == str("max").upper(): + cnn.append( + torch.nn.MaxPool2d( + kernel_size=pooling_kernel_size[i], stride=pooling_stride[i] + ) + ) + setting_understood = True + elif pooling_type.upper() == str("average").upper(): + cnn.append( + torch.nn.AvgPool2d( + kernel_size=pooling_kernel_size[i], stride=pooling_stride[i] + ) + ) + setting_understood = True + elif pooling_type.upper() == str("none").upper(): + setting_understood = True + assert setting_understood + + cnn[-1].train_bias = False + cnn[-1].train_weights = False + + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter} (Pooling layer): {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights} " + ) + ) + layer_counter += 1 + + if softmax_enable[i]: + cnn.append( + SoftmaxPower( + dim=1, + power=float(softmax_power), + mean_mode=bool(softmax_meanmode), + no_input_mode=bool(softmax_no_input_mode), + ) + ) + + cnn[-1].train_bias = False + cnn[-1].train_weights = False + + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter}: {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights} " + ) + ) + layer_counter += 1 + + # Output layer + cnn.append( + torch.nn.Conv2d( + in_channels=int(temp_image.shape[1]), + out_channels=int(number_of_classes), + kernel_size=(int(temp_image.shape[2]), int(temp_image.shape[3])), + stride=1, + bias=bool(conv_bias[-1]), + ) + ) + + # Load bias + if bool(conv_bias[-1]) and bool(train_bias[-1]) is False: + filename_load = os.path.join( + path_pretrained_weights_bias, str(f"bias_{len(conv_out_channel)}.npy") + ) + logger.info( + f"Replace bias in conv2d {len(conv_out_channel)} with {filename_load}" + ) + temp = np.load(filename_load) + assert torch.equal( + torch.Tensor(temp.shape), + torch.Tensor(cnn[-1]._parameters["bias"].shape), + ) + cnn[-1]._parameters["bias"] = torch.tensor( + temp, + dtype=cnn[-1]._parameters["bias"].dtype, + requires_grad=False, + device=cnn[-1]._parameters["bias"].device, + ) + + # Load weights + if train_weights[-1] is False: + filename_load = os.path.join( + path_pretrained_weights_bias, str(f"weights_{len(conv_out_channel)}.npy") + ) + logger.info( + f"Replace weights in conv2d {len(conv_out_channel)} with {filename_load}" + ) + temp = np.load(filename_load) + assert torch.equal( + torch.Tensor(temp.shape), + torch.Tensor(cnn[-1]._parameters["weight"].shape), + ) + cnn[-1]._parameters["weight"] = torch.tensor( + temp, + dtype=cnn[-1]._parameters["weight"].dtype, + requires_grad=False, + device=cnn[-1]._parameters["weight"].device, + ) + + cnn[-1].train_bias = True + if bool(conv_bias[i]) and bool(train_bias[i]) is False: + cnn[-1].train_bias = False + + cnn[-1].train_weights = train_weights[i] + + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter} (Output layer): {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights} " + ) + ) + layer_counter += 1 + + # Output layer needs to have a x and y dim of 1 + assert int(temp_image.shape[2]) == 1 + assert int(temp_image.shape[3]) == 1 + + return cnn