Add files via upload

This commit is contained in:
David Rotermund 2023-07-28 19:35:42 +02:00 committed by GitHub
parent 190666a067
commit e49dba1ee4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

182
draw_kernels_v2.py Normal file
View file

@ -0,0 +1,182 @@
# %%
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patch
import matplotlib as mpl
import torch
from cycler import cycler
mpl.rcParams["text.usetex"] = True
mpl.rcParams["font.family"] = "serif"
def extract_kernel_stride(model: torch.nn.Sequential) -> list[dict]:
result = []
for idx, m in enumerate(model.modules()):
if isinstance(m, (torch.nn.Conv2d, torch.nn.MaxPool2d)):
result.append(
{
"layer_index": idx,
"layer_type": type(m).__name__,
"kernel_size": m.kernel_size,
"stride": m.stride,
}
)
return result
def calculate_kernel_size(
kernel: np.ndarray, stride: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
df: np.ndarray = np.cumprod(
(
np.concatenate(
(np.array(1)[np.newaxis], stride.astype(dtype=np.int64)[:-1]), axis=0
)
)
)
f = 1 + np.cumsum((kernel.astype(dtype=np.int64) - 1) * df)
print(f"Receptive field sizes: {f} ")
return f, df
def draw_kernel(
image: np.ndarray, model: torch.nn.Sequential, ignore_output_conv_layer: bool
) -> None:
"""
Call function after creating the model-to-be-trained.
"""
assert image.shape[0] == 200
assert image.shape[1] == 200
# list of colors to choose from:
prop_cycle = plt.rcParams["axes.prop_cycle"]
colors = prop_cycle.by_key()["color"]
edge_color_cycler = iter(
cycler(color=["sienna", "orange", "gold", "bisque"] + colors)
)
kernel_sizes: list[int] = []
stride_sizes: list[int] = []
layer_type: list[str] = []
# extract kernel and stride information
model_info: list[dict] = extract_kernel_stride(model)
# iterate over kernels to plot on image
for layer in model_info:
kernel_sizes.append(layer["kernel_size"])
stride_sizes.append(layer["stride"])
layer_type.append(layer["layer_type"])
# change tuples to list items:
kernel_array: np.ndarray = np.array([k[0] if isinstance(k, tuple) else k for k in kernel_sizes]) # type: ignore
stride_array: np.ndarray = np.array([s[0] if isinstance(s, tuple) else s for s in stride_sizes]) # type: ignore
# calculate values
kernels, strides = calculate_kernel_size(kernel_array, stride_array)
# position first kernel
start_x: int = 4
start_y: int = 15
# general plot structure:
plt.ion()
_, ax = plt.subplots()
ax.imshow(image, cmap="gray")
ax.tick_params(axis="both", which="major", labelsize=15)
if ignore_output_conv_layer:
number_of_layers: int = len(kernels) - 1
else:
number_of_layers = len(kernels)
for i in range(0, number_of_layers):
edgecolor = next(edge_color_cycler)["color"]
# draw kernel
kernel = patch.Rectangle(
(start_x, start_y),
kernels[i],
kernels[i],
linewidth=1.2,
edgecolor=edgecolor,
facecolor="none",
label=layer_type[i],
)
ax.add_patch(kernel)
# draw stride
stride = patch.Rectangle(
(start_x + strides[i], start_y + strides[i]),
kernels[i],
kernels[i],
linewidth=1.2,
edgecolor=edgecolor,
facecolor="none",
linestyle="dashed",
)
ax.add_patch(stride)
# add distance of next drawing
start_x += 14
start_y += 10
# final plot
plt.tight_layout()
plt.legend(loc="upper right", fontsize=11)
plt.show(block=True)
# %%
if __name__ == "__main__":
import os
import sys
import json
from jsmin import jsmin
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(parent_dir)
from functions.alicorn_data_loader import alicorn_data_loader
from functions.make_cnn_v2 import make_cnn
from functions.create_logger import create_logger
ignore_output_conv_layer: bool = True
network_config_filename = "network_0.json"
config_filenname = "config_v2.json"
with open(config_filenname, "r") as file_handle:
config = json.loads(jsmin(file_handle.read()))
logger = create_logger(
save_logging_messages=False,
display_logging_messages=False,
)
# test image:
data_test = alicorn_data_loader(
num_pfinkel=[0],
load_stimuli_per_pfinkel=10,
condition=str(config["condition"]),
data_path=str(config["data_path"]),
logger=logger,
)
assert data_test.__len__() > 0
input_shape = data_test.__getitem__(0)[1].shape
model = make_cnn(
network_config_filename=network_config_filename,
logger=logger,
input_shape=input_shape,
)
print(model)
# test_image = torch.zeros((1, *input_shape), dtype=torch.float32)
image = data_test.__getitem__(6)[1].squeeze(0)
# call function:
draw_kernel(
image=image.numpy(),
model=model,
ignore_output_conv_layer=ignore_output_conv_layer,
)