diff --git a/cnn_training_v2.py b/cnn_training_v2.py new file mode 100644 index 0000000..7a5e4b7 --- /dev/null +++ b/cnn_training_v2.py @@ -0,0 +1,376 @@ +import torch +import numpy as np +import datetime +import argh +import time +import os +import json +import glob +from jsmin import jsmin +from natsort import natsorted + +from functions.alicorn_data_loader import alicorn_data_loader +from functions.train import train +from functions.test import test +from functions.make_cnn_v2 import make_cnn +from functions.set_seed import set_seed +from functions.plot_intermediate import plot_intermediate +from functions.create_logger import create_logger + + +# to disable logging output from Tensorflow +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" +from torch.utils.tensorboard import SummaryWriter + + +def main( + network_config_filename: str = "network_0.json", + seed_counter: int = 0, +) -> None: + config_filenname = "config_v2.json" + with open(config_filenname, "r") as file_handle: + config = json.loads(jsmin(file_handle.read())) + + logger = create_logger( + save_logging_messages=bool(config["save_logging_messages"]), + display_logging_messages=bool(config["display_logging_messages"]), + ) + + # network settings: + + num_pfinkel: list = np.arange( + int(config["num_pfinkel_start"]), + int(config["num_pfinkel_stop"]), + int(config["num_pfinkel_step"]), + ).tolist() + + run_network( + seed_counter=seed_counter, + minimum_learning_rate=float(config["minimum_learning_rate"]), + batch_size_train=int(config["batch_size_train"]), + batch_size_test=int(config["batch_size_test"]), + learning_rate=float(config["learning_rate"]), + max_epochs=int(config["max_epochs"]), + save_model=bool(config["save_model"]), + stimuli_per_pfinkel=int(config["stimuli_per_pfinkel"]), + num_pfinkel=num_pfinkel, + logger=logger, + save_ever_x_epochs=int(config["save_ever_x_epochs"]), + scheduler_patience=int(config["scheduler_patience"]), + condition=str(config["condition"]), + data_path=str(config["data_path"]), + scale_data=int(config["scale_data"]), + use_scheduler=bool(config["use_scheduler"]), + use_adam=bool(config["use_adam"]), + use_plot_intermediate=bool(config["use_plot_intermediate"]), + scheduler_verbose=bool(config["scheduler_verbose"]), + scheduler_factor=float(config["scheduler_factor"]), + precision_100_percent=int(config["precision_100_percent"]), + scheduler_threshold=float(config["scheduler_threshold"]), + model_continue=bool(config["model_continue"]), + initial_model_path=str(config["initial_model_path"]), + tb_runs_path=str(config["tb_runs_path"]), + trained_models_path=str(config["trained_models_path"]), + performance_data_path=str(config["performance_data_path"]), + network_config_filename=network_config_filename, + ) + + +def run_network( + num_pfinkel: list, + logger, + seed_counter: int, + minimum_learning_rate: float, + scheduler_patience: int, + batch_size_train: int, + batch_size_test: int, + learning_rate: float, + max_epochs: int, + save_model: bool, + stimuli_per_pfinkel: int, + save_ever_x_epochs: int, + condition: str, + data_path: str, + scale_data: float, + use_scheduler: bool, + use_adam: bool, + use_plot_intermediate: bool, + scheduler_verbose: bool, + scheduler_factor: float, + precision_100_percent: int, + scheduler_threshold: float, + model_continue: bool, + initial_model_path: str, + tb_runs_path: str, + trained_models_path: str, + performance_data_path: str, + network_config_filename: str, +) -> None: + # define device: + device_str: str = "cuda:0" if torch.cuda.is_available() else "cpu" + logger.info(f"Using {device_str} device") + device: torch.device = torch.device(device_str) + torch.set_default_dtype(torch.float32) + + # ------------------------------------------------------------------- + logger.info("-==- START -==-") + + train_accuracy: list[float] = [] + train_losses: list[float] = [] + train_loss: list[float] = [] + test_accuracy: list[float] = [] + test_losses: list[float] = [] + + # prepare data: + + logger.info(num_pfinkel) + logger.info(condition) + + logger.info("Loading training data") + data_train = alicorn_data_loader( + num_pfinkel=num_pfinkel, + load_stimuli_per_pfinkel=stimuli_per_pfinkel, + condition=condition, + logger=logger, + data_path=data_path, + ) + assert data_train.__len__() > 0 + input_shape = data_train.__getitem__(0)[1].shape + + logger.info("Loading test data") + data_test = alicorn_data_loader( + num_pfinkel=num_pfinkel, + load_stimuli_per_pfinkel=stimuli_per_pfinkel, + condition=condition, + logger=logger, + data_path=data_path, + ) + + logger.info("Loading done!") + + # data loader + loader_train = torch.utils.data.DataLoader( + data_train, shuffle=True, batch_size=batch_size_train + ) + loader_test = torch.utils.data.DataLoader( + data_test, shuffle=False, batch_size=batch_size_test + ) + + previous_test_acc: float = -1 + + # set seed for reproducibility + set_seed(seed=int(seed_counter), logger=logger) + + # determine num conv layers + model_name = ( + f"{str(network_config_filename).replace('.json','')}_" + f"seed{seed_counter}_{condition}" + ) + current = datetime.datetime.now().strftime("%d%m-%H%M") + + # new tb session + os.makedirs(tb_runs_path, exist_ok=True) + path: str = os.path.join(tb_runs_path, f"{model_name}") + tb = SummaryWriter(path) + + # -------------------------------------------------------------------------- + + # print network configuration: + logger.info("----------------------------------------------------") + logger.info(f"Seed: {seed_counter}") + + # define model: + if model_continue: + filename_list: list = natsorted( + glob.glob(os.path.join(initial_model_path, str("*.pt"))) + ) + assert len(filename_list) > 0 + model_filename: str = filename_list[-1] + logger.info(f"Load filename: {model_filename}") + model = torch.load(model_filename, map_location=device) + else: + model = make_cnn( + network_config_filename=network_config_filename, + logger=logger, + input_shape=input_shape, + ).to(device) + logger.info("----------------------------------------------------") + logger.info(model) + logger.info("----------------------------------------------------") + old_params: dict = {} + for name, param in model.named_parameters(): + old_params[name] = param.data.detach().cpu().clone() + + # pararmeters for training: + param_list: list = [] + + for i in range(0, len(model)): + if model[i].train_bias or model[i].train_weights: + for name, param in model[i].named_parameters(): + if (name == "weight") and model[i].train_weights: + logger.info(f"Learning parameter: layer: {i} name: {name}") + param_list.append(param) + + if (name == "bias") and model[i].train_bias: + logger.info(f"Learning parameter: layer: {i} name: {name}") + param_list.append(param) + + for name, param in model.named_parameters(): + assert ( + torch.isfinite(param.data).sum().cpu() + == torch.tensor(param.data.size()).prod() + ), name + + # optimizer and learning rate scheduler + if use_adam: + optimizer = torch.optim.Adam(param_list, lr=learning_rate) + else: + optimizer = torch.optim.SGD(param_list, lr=learning_rate) # type: ignore + + if use_scheduler: + scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( + optimizer, + patience=scheduler_patience, + eps=minimum_learning_rate / 10, + verbose=scheduler_verbose, + factor=scheduler_factor, + threshold=scheduler_threshold, + ) + + # training loop: + logger.info("-==- Data and network loader: Done -==-") + t_dis0 = time.perf_counter() + for epoch in range(1, max_epochs + 1): + # train + logger.info("-==- Training... -==-") + running_loss = train( + model=model, + loader=loader_train, + optimizer=optimizer, + epoch=epoch, + device=device, + tb=tb, + test_acc=previous_test_acc, + logger=logger, + train_accuracy=train_accuracy, + train_losses=train_losses, + train_loss=train_loss, + scale_data=scale_data, + ) + + # logging: + logger.info("") + + logger.info("Check for changes in the weights:") + for name, param in model.named_parameters(): + if isinstance(old_params[name], torch.Tensor) and isinstance( + param.data, torch.Tensor + ): + temp_torch = param.data.detach().cpu().clone() + if old_params[name].ndim == temp_torch.ndim: + if old_params[name].size() == temp_torch.size(): + abs_diff = torch.abs(old_params[name] - temp_torch).max() + logger.info(f"Parameter {name}: {abs_diff:.3e}") + + old_params[name] = temp_torch + + logger.info("") + + logger.info("-==- Testing... -==-") + previous_test_acc = test( # type: ignore + model=model, + loader=loader_test, + device=device, + tb=tb, + epoch=epoch, + logger=logger, + test_accuracy=test_accuracy, + test_losses=test_losses, + scale_data=scale_data, + ) + + logger.info(f"Time required: {time.perf_counter()-t_dis0:.2e} sec") + + # save model after every 100th epoch: + if save_model and (epoch % save_ever_x_epochs == 0): + pt_filename: str = f"{model_name}_{epoch}Epoch_{current}.pt" + logger.info("") + logger.info(f"Saved model: {pt_filename}") + + os.makedirs(trained_models_path, exist_ok=True) + torch.save( + model, + os.path.join( + trained_models_path, + pt_filename, + ), + ) + + # check nan + for name, param in model.named_parameters(): + assert ( + torch.isfinite(param.data).sum().cpu() + == torch.tensor(param.data.size()).prod() + ), name + + # update scheduler + if use_scheduler: + if scheduler_verbose and isinstance(scheduler.best, float): + logger.info( + "Step LR scheduler: " + f"Loss: {running_loss:.2e} " + f"Best: {scheduler.best:.2e} " + f"Delta: {running_loss-scheduler.best:.2e} " + f"Threshold: {scheduler.threshold:.2e} " + f"Number of bad epochs: {scheduler.num_bad_epochs} " + f"Patience: {scheduler.patience} " + ) + scheduler.step(running_loss) + + # stop learning: lr too small + if optimizer.param_groups[0]["lr"] <= minimum_learning_rate: + logger.info("Learning rate is too small. Stop training.") + break + + # stop learning: done + if round(previous_test_acc, precision_100_percent) == 100.0: + logger.info("100% test performance reached. Stop training.") + break + + if use_plot_intermediate: + plot_intermediate( + train_accuracy=train_accuracy, + test_accuracy=test_accuracy, + train_losses=train_losses, + test_losses=test_losses, + save_name=model_name, + ) + + os.makedirs(performance_data_path, exist_ok=True) + np.savez( + os.path.join(performance_data_path, f"performances_{model_name}.npz"), + train_accuracy=np.array(train_accuracy), + test_accuracy=np.array(test_accuracy), + train_losses=np.array(train_losses), + test_losses=np.array(test_losses), + ) + + # end TB session: + tb.close() + + # print model name: + logger.info("") + logger.info(f"Saved model: {model_name}_{epoch}Epoch_{current}") + if save_model: + os.makedirs(trained_models_path, exist_ok=True) + torch.save( + model, + os.path.join( + trained_models_path, + f"{model_name}_{epoch}Epoch_{current}.pt", + ), + ) + + +if __name__ == "__main__": + argh.dispatch_command(main) diff --git a/config_v2.json b/config_v2.json new file mode 100644 index 0000000..1e97b84 --- /dev/null +++ b/config_v2.json @@ -0,0 +1,43 @@ +{ + "model_continue": false, // true, (false) + "max_epochs": 5000, + "batch_size_train": 250, + "batch_size_test": 500, + // data source -> + "data_path": "/home/kk/Documents/Semester4/code/RenderStimuli/Output/", + "stimuli_per_pfinkel": 30000, + "num_pfinkel_start": 0, + "num_pfinkel_stop": 10, + "num_pfinkel_step": 10, + "condition": "Coignless", + "scale_data": 255.0, // (255.0) + // <- data source + // optimizer -> + "use_adam": true, // (true) => adam, false => SGD + // <- optimizer + // LR Scheduler -> + "use_scheduler": true, // (true), false + "scheduler_verbose": true, + "scheduler_factor": 0.025, //(0.1) + "scheduler_patience": 10, // (10) + "scheduler_threshold": 1e-5, // (1e-5) + "minimum_learning_rate": 1e-10, + "learning_rate": 1e-4, + // <- LR Scheduler + // logging -> + "save_logging_messages": true, // (true), false + "display_logging_messages": true, // (true), false + // <- logging + // saving the model and co -> + "save_model": true, + "use_plot_intermediate": false, // true, (false) + "precision_100_percent": 4, // (4) + "save_ever_x_epochs": 10, // (10) + // <- saving the model and co + // path definitions -> + "initial_model_path": "initial_models", + "tb_runs_path": "tb_runs", + "trained_models_path": "trained_models", + "performance_data_path": "performance_data" + // <- path definitions +} \ No newline at end of file diff --git a/network_0.json b/network_0.json new file mode 100644 index 0000000..6fed93d --- /dev/null +++ b/network_0.json @@ -0,0 +1,68 @@ +{ // Convolution layer --------------------------------------------------------- + "conv_out_channel": [ + 32, + 8, + 8 + ], + "conv_kernel_size": [ + 11, + 7, + 15 + ], + "conv_stride_size": [ + 1, + 1, + 1 + ], + "conv_bias": [ // Warning: One more for the output layer + true, + true, + true, + true + ], + "conv_padding": [ + 0, + 0, + 0 + ], + // Activation function ----------------------------------------------------- + "activation_function": "leaky relu", // tanh, relu, (leaky relu), none + "l_relu_negative_slope": 0.1, // (0.1) + // Pooling layer ----------------------------------------------------------- + "pooling_kernel_size": [ + 3, + 0, + 0 + ], + "pooling_stride": [ + 2, + 0, + 0 + ], + "pooling_type": "max", // (max), average, none + // Softmax layer ----------------------------------------------------------- + "softmax_enable": [ + false, + false, + false + ], + "softmax_power": 0.0, // (0.0) = Exp + "softmax_meanmode": true, // true, false + "softmax_no_input_mode": false, // true, (false) + // Load pre-trained weights and biases ------------------------------------- + "path_pretrained_weights_bias": "", + "train_weights": [ // Warning: One more for the output layer + true, + true, + true, + true + ], + "train_bias": [ // Warning: One more for the output layer + true, + true, + true, + true + ], + // Output layer ------------------------------------------------------------ + "number_of_classes": 2 +} \ No newline at end of file