Add files via upload
This commit is contained in:
parent
5439f31d0d
commit
ed5ac98241
1 changed files with 154 additions and 81 deletions
|
@ -10,39 +10,11 @@ mpl.rcParams["text.usetex"] = True
|
|||
mpl.rcParams["font.family"] = "serif"
|
||||
|
||||
|
||||
def extract_kernel_stride(model: torch.nn.Sequential) -> list[dict]:
|
||||
result = []
|
||||
for idx, m in enumerate(model.modules()):
|
||||
if isinstance(m, (torch.nn.Conv2d, torch.nn.MaxPool2d)):
|
||||
result.append(
|
||||
{
|
||||
"layer_index": idx,
|
||||
"layer_type": type(m).__name__,
|
||||
"kernel_size": m.kernel_size,
|
||||
"stride": m.stride,
|
||||
}
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def calculate_kernel_size(
|
||||
kernel: np.ndarray, stride: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
df: np.ndarray = np.cumprod(
|
||||
(
|
||||
np.concatenate(
|
||||
(np.array(1)[np.newaxis], stride.astype(dtype=np.int64)[:-1]), axis=0
|
||||
)
|
||||
)
|
||||
)
|
||||
f = 1 + np.cumsum((kernel.astype(dtype=np.int64) - 1) * df)
|
||||
|
||||
print(f"Receptive field sizes: {f} ")
|
||||
return f, df
|
||||
|
||||
|
||||
def draw_kernel(
|
||||
image: np.ndarray, model: torch.nn.Sequential, ignore_output_conv_layer: bool
|
||||
image: np.ndarray,
|
||||
coordinate_list: list,
|
||||
layer_type_list: list,
|
||||
ignore_output_conv_layer: bool,
|
||||
) -> None:
|
||||
"""
|
||||
Call function after creating the model-to-be-trained.
|
||||
|
@ -56,25 +28,6 @@ def draw_kernel(
|
|||
edge_color_cycler = iter(
|
||||
cycler(color=["sienna", "orange", "gold", "bisque"] + colors)
|
||||
)
|
||||
kernel_sizes: list[int] = []
|
||||
stride_sizes: list[int] = []
|
||||
layer_type: list[str] = []
|
||||
|
||||
# extract kernel and stride information
|
||||
model_info: list[dict] = extract_kernel_stride(model)
|
||||
|
||||
# iterate over kernels to plot on image
|
||||
for layer in model_info:
|
||||
kernel_sizes.append(layer["kernel_size"])
|
||||
stride_sizes.append(layer["stride"])
|
||||
layer_type.append(layer["layer_type"])
|
||||
|
||||
# change tuples to list items:
|
||||
kernel_array: np.ndarray = np.array([k[0] if isinstance(k, tuple) else k for k in kernel_sizes]) # type: ignore
|
||||
stride_array: np.ndarray = np.array([s[0] if isinstance(s, tuple) else s for s in stride_sizes]) # type: ignore
|
||||
|
||||
# calculate values
|
||||
kernels, strides = calculate_kernel_size(kernel_array, stride_array)
|
||||
|
||||
# position first kernel
|
||||
start_x: int = 4
|
||||
|
@ -87,29 +40,34 @@ def draw_kernel(
|
|||
ax.tick_params(axis="both", which="major", labelsize=15)
|
||||
|
||||
if ignore_output_conv_layer:
|
||||
number_of_layers: int = len(kernels) - 1
|
||||
number_of_layers: int = len(layer_type_list) - 1
|
||||
else:
|
||||
number_of_layers = len(kernels)
|
||||
number_of_layers = len(layer_type_list)
|
||||
|
||||
for i in range(0, number_of_layers):
|
||||
if layer_type_list[i] is not None:
|
||||
kernels = int(coordinate_list[i].shape[0])
|
||||
edgecolor = next(edge_color_cycler)["color"]
|
||||
# draw kernel
|
||||
kernel = patch.Rectangle(
|
||||
(start_x, start_y),
|
||||
kernels[i],
|
||||
kernels[i],
|
||||
kernels,
|
||||
kernels,
|
||||
linewidth=1.2,
|
||||
edgecolor=edgecolor,
|
||||
facecolor="none",
|
||||
label=layer_type[i],
|
||||
label=layer_type_list[i],
|
||||
)
|
||||
ax.add_patch(kernel)
|
||||
|
||||
if coordinate_list[i].shape[1] > 1:
|
||||
strides = int(coordinate_list[i][0, 1]) - int(coordinate_list[i][0, 0])
|
||||
|
||||
# draw stride
|
||||
stride = patch.Rectangle(
|
||||
(start_x + strides[i], start_y + strides[i]),
|
||||
kernels[i],
|
||||
kernels[i],
|
||||
(start_x + strides, start_y + strides),
|
||||
kernels,
|
||||
kernels,
|
||||
linewidth=1.2,
|
||||
edgecolor=edgecolor,
|
||||
facecolor="none",
|
||||
|
@ -127,6 +85,108 @@ def draw_kernel(
|
|||
plt.show(block=True)
|
||||
|
||||
|
||||
def unfold(
|
||||
layer: torch.nn.Conv2d | torch.nn.MaxPool2d | torch.nn.AvgPool2d, size: int
|
||||
) -> torch.Tensor:
|
||||
if isinstance(layer.kernel_size, tuple):
|
||||
assert layer.kernel_size[0] == layer.kernel_size[1]
|
||||
kernel_size: int = int(layer.kernel_size[0])
|
||||
else:
|
||||
kernel_size = int(layer.kernel_size)
|
||||
|
||||
if isinstance(layer.dilation, tuple):
|
||||
assert layer.dilation[0] == layer.dilation[1]
|
||||
dilation: int = int(layer.dilation[0])
|
||||
else:
|
||||
dilation = int(layer.dilation) # type: ignore
|
||||
|
||||
if isinstance(layer.padding, tuple):
|
||||
assert layer.padding[0] == layer.padding[1]
|
||||
padding: int = int(layer.padding[0])
|
||||
else:
|
||||
padding = int(layer.padding)
|
||||
|
||||
if isinstance(layer.stride, tuple):
|
||||
assert layer.stride[0] == layer.stride[1]
|
||||
stride: int = int(layer.stride[0])
|
||||
else:
|
||||
stride = int(layer.stride)
|
||||
|
||||
out = (
|
||||
torch.nn.functional.unfold(
|
||||
torch.arange(0, size, dtype=torch.float32)
|
||||
.unsqueeze(0)
|
||||
.unsqueeze(0)
|
||||
.unsqueeze(-1),
|
||||
kernel_size=(kernel_size, 1),
|
||||
dilation=(dilation, 1),
|
||||
padding=(padding, 0),
|
||||
stride=(stride, 1),
|
||||
)
|
||||
.squeeze(0)
|
||||
.type(torch.int64)
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def analyse_network(
|
||||
model: torch.nn.Sequential, input_shape: int
|
||||
) -> tuple[list, list, list]:
|
||||
combined_list: list = []
|
||||
coordinate_list: list = []
|
||||
layer_type_list: list = []
|
||||
pixel_used: list[int] = []
|
||||
|
||||
size: int = int(input_shape)
|
||||
|
||||
for layer_id in range(0, len(model)):
|
||||
if isinstance(
|
||||
model[layer_id], (torch.nn.Conv2d, torch.nn.MaxPool2d, torch.nn.AvgPool2d)
|
||||
):
|
||||
out = unfold(layer=model[layer_id], size=size)
|
||||
coordinate_list.append(out)
|
||||
layer_type_list.append(
|
||||
str(type(model[layer_id])).split(".")[-1].split("'")[0]
|
||||
)
|
||||
size = int(out.shape[-1])
|
||||
else:
|
||||
coordinate_list.append(None)
|
||||
layer_type_list.append(None)
|
||||
|
||||
assert coordinate_list[0] is not None
|
||||
combined_list.append(coordinate_list[0])
|
||||
|
||||
for i in range(1, len(coordinate_list)):
|
||||
if coordinate_list[i] is None:
|
||||
combined_list.append(combined_list[i - 1])
|
||||
else:
|
||||
for pos in range(0, coordinate_list[i].shape[-1]):
|
||||
idx_shape: int | None = None
|
||||
|
||||
idx = torch.unique(
|
||||
torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]])
|
||||
)
|
||||
if idx_shape is None:
|
||||
idx_shape = idx.shape[0]
|
||||
assert idx_shape == idx.shape[0]
|
||||
|
||||
assert idx_shape is not None
|
||||
|
||||
temp = torch.zeros((idx_shape, coordinate_list[i].shape[-1]))
|
||||
for pos in range(0, coordinate_list[i].shape[-1]):
|
||||
idx = torch.unique(
|
||||
torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]])
|
||||
)
|
||||
temp[:, pos] = idx
|
||||
combined_list.append(temp)
|
||||
|
||||
for i in range(0, len(combined_list)):
|
||||
pixel_used.append(int(torch.unique(torch.flatten(combined_list[i])).shape[0]))
|
||||
|
||||
return combined_list, layer_type_list, pixel_used
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
import os
|
||||
|
@ -170,13 +230,26 @@ if __name__ == "__main__":
|
|||
)
|
||||
print(model)
|
||||
|
||||
# test_image = torch.zeros((1, *input_shape), dtype=torch.float32)
|
||||
assert input_shape[-2] == input_shape[-1]
|
||||
coordinate_list, layer_type_list, pixel_used = analyse_network(
|
||||
model=model, input_shape=int(input_shape[-1])
|
||||
)
|
||||
|
||||
for i in range(0, len(coordinate_list)):
|
||||
print(
|
||||
(
|
||||
f"Layer: {i}, Positions: {coordinate_list[i].shape[1]}, "
|
||||
f"Pixel per Positions: {coordinate_list[i].shape[0]}, "
|
||||
f"Type: {layer_type_list[i]}, Number of pixel used: {pixel_used[i]}"
|
||||
)
|
||||
)
|
||||
|
||||
image = data_test.__getitem__(6)[1].squeeze(0)
|
||||
|
||||
# call function:
|
||||
draw_kernel(
|
||||
image=image.numpy(),
|
||||
model=model,
|
||||
coordinate_list=coordinate_list,
|
||||
layer_type_list=layer_type_list,
|
||||
ignore_output_conv_layer=ignore_output_conv_layer,
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue