import torch def unfold( layer: torch.nn.Conv2d | torch.nn.MaxPool2d | torch.nn.AvgPool2d, size: int ) -> torch.Tensor: if isinstance(layer.kernel_size, tuple): assert layer.kernel_size[0] == layer.kernel_size[1] kernel_size: int = int(layer.kernel_size[0]) else: kernel_size = int(layer.kernel_size) if isinstance(layer.dilation, tuple): assert layer.dilation[0] == layer.dilation[1] dilation: int = int(layer.dilation[0]) else: dilation = int(layer.dilation) # type: ignore if isinstance(layer.padding, tuple): assert layer.padding[0] == layer.padding[1] padding: int = int(layer.padding[0]) else: padding = int(layer.padding) if isinstance(layer.stride, tuple): assert layer.stride[0] == layer.stride[1] stride: int = int(layer.stride[0]) else: stride = int(layer.stride) out = ( torch.nn.functional.unfold( torch.arange(0, size, dtype=torch.float32) .unsqueeze(0) .unsqueeze(0) .unsqueeze(-1), kernel_size=(kernel_size, 1), dilation=(dilation, 1), padding=(padding, 0), stride=(stride, 1), ) .squeeze(0) .type(torch.int64) ) return out def analyse_network( model: torch.nn.Sequential, input_shape: int ) -> tuple[list, list, list]: combined_list: list = [] coordinate_list: list = [] layer_type_list: list = [] pixel_used: list[int] = [] size: int = int(input_shape) for layer_id in range(0, len(model)): if isinstance( model[layer_id], (torch.nn.Conv2d, torch.nn.MaxPool2d, torch.nn.AvgPool2d) ): out = unfold(layer=model[layer_id], size=size) coordinate_list.append(out) layer_type_list.append( str(type(model[layer_id])).split(".")[-1].split("'")[0] ) size = int(out.shape[-1]) else: coordinate_list.append(None) layer_type_list.append(None) assert coordinate_list[0] is not None combined_list.append(coordinate_list[0]) for i in range(1, len(coordinate_list)): if coordinate_list[i] is None: combined_list.append(combined_list[i - 1]) else: for pos in range(0, coordinate_list[i].shape[-1]): idx_shape: int | None = None idx = torch.unique( torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]]) ) if idx_shape is None: idx_shape = idx.shape[0] assert idx_shape == idx.shape[0] assert idx_shape is not None temp = torch.zeros((idx_shape, coordinate_list[i].shape[-1])) for pos in range(0, coordinate_list[i].shape[-1]): idx = torch.unique( torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]]) ) temp[:, pos] = idx combined_list.append(temp) for i in range(0, len(combined_list)): pixel_used.append(int(torch.unique(torch.flatten(combined_list[i])).shape[0])) return combined_list, layer_type_list, pixel_used