import torch import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams["text.usetex"] = True mpl.rcParams["font.family"] = "serif" # path to NN nn = "network_0_seed0_Coignless_83Epoch_2807-1455" PATH = f"./trained_models/{nn}.pt" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load and eval model model = torch.load(PATH).to(device) model.eval() print("Full network:") print(model) print("") # enter index to plot: idx = int(input("Please select layer: ")) print(f"Selected layer {idx}:") assert idx < len(model) model = model[: idx + 1] # random input input_img = torch.randn(1, 200, 200).to(device) input_img = input_img.unsqueeze(0) input_img.requires_grad_(True) # type: ignore output_shape = model(input_img).shape target_image = torch.zeros( (*output_shape,), dtype=input_img.dtype, device=input_img.device ) input_parameter = torch.nn.Parameter(input_img) # define parameters num_iterations: int = 10000 learning_rate: float = 0.0005 print( ( f"Available max positions: f:{target_image.shape[1]} " f"x:{target_image.shape[2]} y:{target_image.shape[3]}" ) ) # select neuron and plot for all feature maps (?) neuron_f = int(input("Please select neuron_f: ")) neuron_x = target_image.shape[2] // 2 neuron_y = target_image.shape[3] // 2 print(f"Selected neuron {neuron_f}, {neuron_x}, {neuron_y}") optimizer = torch.optim.Adam([{"params": input_parameter}], lr=learning_rate) # TODO: # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) target_image[0, neuron_f, neuron_x, neuron_y] = 1e4 for i in range(num_iterations): optimizer.zero_grad() output = model(input_parameter) loss = torch.nn.functional.mse_loss(output, target_image) loss.backward() if i % 1000 == 0: print(f"{i} : loss={float(loss):.3e} lr={optimizer.param_groups[0]['lr']:.3e}") optimizer.step() # TODO: # scheduler.step(float(loss)) # plot image: plt.imshow(input_img.squeeze().detach().cpu().numpy(), cmap="gray") plt.show(block=True)