# %% import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patch import matplotlib as mpl from cycler import cycler from functions.analyse_network import analyse_network mpl.rcParams["text.usetex"] = True mpl.rcParams["font.family"] = "serif" def draw_kernel( image: np.ndarray, coordinate_list: list, layer_type_list: list, ignore_output_conv_layer: bool, ) -> None: """ Call function after creating the model-to-be-trained. """ assert image.shape[0] == 200 assert image.shape[1] == 200 # list of colors to choose from: prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] edge_color_cycler = iter( cycler(color=["sienna", "orange", "gold", "bisque"] + colors) ) # position first kernel start_x: int = 4 start_y: int = 15 # general plot structure: plt.ion() _, ax = plt.subplots() ax.imshow(image, cmap="gray") ax.tick_params(axis="both", which="major", labelsize=15) if ignore_output_conv_layer: number_of_layers: int = len(layer_type_list) - 1 else: number_of_layers = len(layer_type_list) for i in range(0, number_of_layers): if layer_type_list[i] is not None: kernels = int(coordinate_list[i].shape[0]) edgecolor = next(edge_color_cycler)["color"] # draw kernel kernel = patch.Rectangle( (start_x, start_y), kernels, kernels, linewidth=1.2, edgecolor=edgecolor, facecolor="none", label=layer_type_list[i], ) ax.add_patch(kernel) if coordinate_list[i].shape[1] > 1: strides = int(coordinate_list[i][0, 1]) - int(coordinate_list[i][0, 0]) # draw stride stride = patch.Rectangle( (start_x + strides, start_y + strides), kernels, kernels, linewidth=1.2, edgecolor=edgecolor, facecolor="none", linestyle="dashed", ) ax.add_patch(stride) # add distance of next drawing start_x += 14 start_y += 10 # final plot plt.tight_layout() plt.legend(loc="upper right", fontsize=11) plt.show(block=True) # %% if __name__ == "__main__": import os import sys import json from jsmin import jsmin parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(parent_dir) from functions.alicorn_data_loader import alicorn_data_loader from functions.make_cnn_v2 import make_cnn from functions.create_logger import create_logger ignore_output_conv_layer: bool = True network_config_filename = "network_0.json" config_filenname = "config_v2.json" with open(config_filenname, "r") as file_handle: config = json.loads(jsmin(file_handle.read())) logger = create_logger( save_logging_messages=False, display_logging_messages=False, ) # test image: data_test = alicorn_data_loader( num_pfinkel=[0], load_stimuli_per_pfinkel=10, condition=str(config["condition"]), data_path=str(config["data_path"]), logger=logger, ) assert data_test.__len__() > 0 input_shape = data_test.__getitem__(0)[1].shape model = make_cnn( network_config_filename=network_config_filename, logger=logger, input_shape=input_shape, ) print(model) assert input_shape[-2] == input_shape[-1] coordinate_list, layer_type_list, pixel_used = analyse_network( model=model, input_shape=int(input_shape[-1]) ) for i in range(0, len(coordinate_list)): print( ( f"Layer: {i}, Positions: {coordinate_list[i].shape[1]}, " f"Pixel per Positions: {coordinate_list[i].shape[0]}, " f"Type: {layer_type_list[i]}, Number of pixel used: {pixel_used[i]}" ) ) image = data_test.__getitem__(6)[1].squeeze(0) # call function: draw_kernel( image=image.numpy(), coordinate_list=coordinate_list, layer_type_list=layer_type_list, ignore_output_conv_layer=ignore_output_conv_layer, )