f7e931ba3d
Additional files used for analysis
103 lines
3.2 KiB
Python
103 lines
3.2 KiB
Python
import torch
|
|
|
|
|
|
def unfold(
|
|
layer: torch.nn.Conv2d | torch.nn.MaxPool2d | torch.nn.AvgPool2d, size: int
|
|
) -> torch.Tensor:
|
|
if isinstance(layer.kernel_size, tuple):
|
|
assert layer.kernel_size[0] == layer.kernel_size[1]
|
|
kernel_size: int = int(layer.kernel_size[0])
|
|
else:
|
|
kernel_size = int(layer.kernel_size)
|
|
|
|
if isinstance(layer.dilation, tuple):
|
|
assert layer.dilation[0] == layer.dilation[1]
|
|
dilation: int = int(layer.dilation[0])
|
|
else:
|
|
dilation = int(layer.dilation) # type: ignore
|
|
|
|
if isinstance(layer.padding, tuple):
|
|
assert layer.padding[0] == layer.padding[1]
|
|
padding: int = int(layer.padding[0])
|
|
else:
|
|
padding = int(layer.padding)
|
|
|
|
if isinstance(layer.stride, tuple):
|
|
assert layer.stride[0] == layer.stride[1]
|
|
stride: int = int(layer.stride[0])
|
|
else:
|
|
stride = int(layer.stride)
|
|
|
|
out = (
|
|
torch.nn.functional.unfold(
|
|
torch.arange(0, size, dtype=torch.float32)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0)
|
|
.unsqueeze(-1),
|
|
kernel_size=(kernel_size, 1),
|
|
dilation=(dilation, 1),
|
|
padding=(padding, 0),
|
|
stride=(stride, 1),
|
|
)
|
|
.squeeze(0)
|
|
.type(torch.int64)
|
|
)
|
|
|
|
return out
|
|
|
|
|
|
def analyse_network(
|
|
model: torch.nn.Sequential, input_shape: int
|
|
) -> tuple[list, list, list]:
|
|
combined_list: list = []
|
|
coordinate_list: list = []
|
|
layer_type_list: list = []
|
|
pixel_used: list[int] = []
|
|
|
|
size: int = int(input_shape)
|
|
|
|
for layer_id in range(0, len(model)):
|
|
if isinstance(
|
|
model[layer_id], (torch.nn.Conv2d, torch.nn.MaxPool2d, torch.nn.AvgPool2d)
|
|
):
|
|
out = unfold(layer=model[layer_id], size=size)
|
|
coordinate_list.append(out)
|
|
layer_type_list.append(
|
|
str(type(model[layer_id])).split(".")[-1].split("'")[0]
|
|
)
|
|
size = int(out.shape[-1])
|
|
else:
|
|
coordinate_list.append(None)
|
|
layer_type_list.append(None)
|
|
|
|
assert coordinate_list[0] is not None
|
|
combined_list.append(coordinate_list[0])
|
|
|
|
for i in range(1, len(coordinate_list)):
|
|
if coordinate_list[i] is None:
|
|
combined_list.append(combined_list[i - 1])
|
|
else:
|
|
for pos in range(0, coordinate_list[i].shape[-1]):
|
|
idx_shape: int | None = None
|
|
|
|
idx = torch.unique(
|
|
torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]])
|
|
)
|
|
if idx_shape is None:
|
|
idx_shape = idx.shape[0]
|
|
assert idx_shape == idx.shape[0]
|
|
|
|
assert idx_shape is not None
|
|
|
|
temp = torch.zeros((idx_shape, coordinate_list[i].shape[-1]))
|
|
for pos in range(0, coordinate_list[i].shape[-1]):
|
|
idx = torch.unique(
|
|
torch.flatten(combined_list[i - 1][:, coordinate_list[i][:, pos]])
|
|
)
|
|
temp[:, pos] = idx
|
|
combined_list.append(temp)
|
|
|
|
for i in range(0, len(combined_list)):
|
|
pixel_used.append(int(torch.unique(torch.flatten(combined_list[i])).shape[0]))
|
|
|
|
return combined_list, layer_type_list, pixel_used
|