475746ad41
Ordner beinhaltet den momentanen Stand des Codes, wie ich ihn auf den GPUs ausführe (d.h. ohne Softmax, etc) und angepasst auf die jeweilige Stimuluskondition.
52 lines
No EOL
1.5 KiB
JSON
52 lines
No EOL
1.5 KiB
JSON
{
|
|
"data_path": "/home/kk/Documents/Semester4/code/RenderStimuli/Output/",
|
|
"save_logging_messages": true, // (true), false
|
|
"display_logging_messages": true, // (true), false
|
|
"batch_size_train": 500,
|
|
"batch_size_test": 250,
|
|
"max_epochs": 2000,
|
|
"save_model": true,
|
|
"conv_0_kernel_size": 11,
|
|
"mp_1_kernel_size": 3,
|
|
"mp_1_stride": 2,
|
|
"use_plot_intermediate": true, // true, (false)
|
|
"stimuli_per_pfinkel": 10000,
|
|
"num_pfinkel_start": 0,
|
|
"num_pfinkel_stop": 100,
|
|
"num_pfinkel_step": 10,
|
|
"precision_100_percent": 4, // (4)
|
|
"train_first_layer": true, // true, (false)
|
|
"save_ever_x_epochs": 10, // (10)
|
|
"activation_function": "leaky relu", // tanh, relu, (leaky relu), none
|
|
"leak_relu_negative_slope": 0.1, // (0.1)
|
|
// LR Scheduler ->
|
|
"use_scheduler": true, // (true), false
|
|
"scheduler_verbose": true,
|
|
"scheduler_factor": 0.1, //(0.1)
|
|
"scheduler_patience": 10, // (10)
|
|
"scheduler_threshold": 1e-5, // (1e-4)
|
|
"minimum_learning_rate": 1e-8,
|
|
"learning_rate": 0.0001,
|
|
// <- LR Scheduler
|
|
"pooling_type": "max", // (max), average, none
|
|
"conv_0_enable_softmax": false, // true, (false)
|
|
"use_adam": true, // (true) => adam, false => SGD
|
|
"condition": "Coignless",
|
|
"scale_data": 255.0, // (255.0),
|
|
"conv_out_channels_list": [
|
|
[
|
|
3,
|
|
8,
|
|
8
|
|
]
|
|
],
|
|
"conv_kernel_sizes": [
|
|
[
|
|
7,
|
|
15
|
|
]
|
|
],
|
|
"conv_stride_sizes": [
|
|
1
|
|
]
|
|
} |