310 lines
11 KiB
Python
310 lines
11 KiB
Python
import torch
|
|
import os
|
|
import numpy as np
|
|
import json
|
|
from jsmin import jsmin
|
|
|
|
from functions.SoftmaxPower import SoftmaxPower
|
|
|
|
|
|
def make_cnn(
|
|
network_config_filename: str,
|
|
logger,
|
|
input_shape: torch.Size,
|
|
) -> torch.nn.Sequential:
|
|
with open(network_config_filename, "r") as file_handle:
|
|
network_config = json.loads(jsmin(file_handle.read()))
|
|
|
|
# Convolution layer
|
|
conv_out_channel: list[int] = network_config["conv_out_channel"]
|
|
conv_kernel_size: list[int] = network_config["conv_kernel_size"]
|
|
conv_stride_size: list[int] = network_config["conv_stride_size"]
|
|
conv_bias: list[bool] = network_config["conv_bias"]
|
|
conv_padding: list[int | str] = network_config["conv_padding"]
|
|
|
|
# Activation function
|
|
activation_function: str = str(network_config["activation_function"])
|
|
l_relu_negative_slope: float = float(network_config["l_relu_negative_slope"])
|
|
|
|
# Pooling layer
|
|
pooling_kernel_size: list[int] = network_config["pooling_kernel_size"]
|
|
pooling_stride: list[int] = network_config["pooling_stride"]
|
|
pooling_type: str = str(network_config["pooling_type"])
|
|
|
|
# Softmax layer
|
|
softmax_enable: list[bool] = network_config["softmax_enable"]
|
|
softmax_power: float = network_config["softmax_power"]
|
|
softmax_meanmode: bool = network_config["softmax_meanmode"]
|
|
softmax_no_input_mode: bool = network_config["softmax_no_input_mode"]
|
|
|
|
# Load pre-trained weights and biases
|
|
path_pretrained_weights_bias: str = str(
|
|
network_config["path_pretrained_weights_bias"]
|
|
)
|
|
train_weights: list[bool] = network_config["train_weights"]
|
|
train_bias: list[bool] = network_config["train_bias"]
|
|
|
|
# Output layer
|
|
number_of_classes: int = int(network_config["number_of_classes"])
|
|
|
|
assert len(conv_out_channel) == len(conv_kernel_size)
|
|
assert len(conv_out_channel) == len(conv_stride_size)
|
|
assert len(conv_out_channel) + 1 == len(conv_bias)
|
|
assert len(conv_out_channel) == len(conv_padding)
|
|
assert len(conv_out_channel) == len(pooling_kernel_size)
|
|
assert len(conv_out_channel) == len(pooling_stride)
|
|
assert len(conv_out_channel) + 1 == len(train_weights)
|
|
assert len(conv_out_channel) + 1 == len(train_bias)
|
|
assert len(conv_out_channel) == len(softmax_enable)
|
|
assert number_of_classes > 1
|
|
|
|
cnn = torch.nn.Sequential()
|
|
|
|
temp_image: torch.Tensor = torch.zeros(
|
|
(1, *input_shape), dtype=torch.float32, device=torch.device("cpu")
|
|
)
|
|
logger.info(
|
|
(
|
|
f"Input shape: {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}"
|
|
)
|
|
)
|
|
layer_counter: int = 0
|
|
|
|
# Changing structure
|
|
for i in range(0, len(conv_out_channel)):
|
|
# Conv Layer
|
|
if i == 0:
|
|
in_channels: int = int(temp_image.shape[0])
|
|
else:
|
|
in_channels = conv_out_channel[i - 1]
|
|
cnn.append(
|
|
torch.nn.Conv2d(
|
|
in_channels=int(in_channels),
|
|
out_channels=int(conv_out_channel[i]),
|
|
kernel_size=int(conv_kernel_size[i]),
|
|
stride=int(conv_stride_size[i]),
|
|
bias=bool(conv_bias[i]),
|
|
padding=conv_padding[i],
|
|
)
|
|
)
|
|
|
|
# Load bias
|
|
if bool(conv_bias[i]) and bool(train_bias[i]) is False:
|
|
filename_load = os.path.join(
|
|
path_pretrained_weights_bias, str(f"bias_{i}.npy")
|
|
)
|
|
logger.info(f"Replace bias in conv2d {i} with {filename_load}")
|
|
temp = np.load(filename_load)
|
|
assert torch.equal(
|
|
torch.Tensor(temp.shape),
|
|
torch.Tensor(cnn[-1]._parameters["bias"].shape),
|
|
)
|
|
cnn[-1]._parameters["bias"] = torch.tensor(
|
|
temp,
|
|
dtype=cnn[-1]._parameters["bias"].dtype,
|
|
requires_grad=False,
|
|
device=cnn[-1]._parameters["bias"].device,
|
|
)
|
|
|
|
# Load weights
|
|
if train_weights[i] is False:
|
|
filename_load = os.path.join(
|
|
path_pretrained_weights_bias, str(f"weights_{i}.npy")
|
|
)
|
|
logger.info(f"Replace weights in conv2d {i} with {filename_load}")
|
|
temp = np.load(filename_load)
|
|
assert torch.equal(
|
|
torch.Tensor(temp.shape),
|
|
torch.Tensor(cnn[-1]._parameters["weight"].shape),
|
|
)
|
|
cnn[-1]._parameters["weight"] = torch.tensor(
|
|
temp,
|
|
dtype=cnn[-1]._parameters["weight"].dtype,
|
|
requires_grad=False,
|
|
device=cnn[-1]._parameters["weight"].device,
|
|
)
|
|
|
|
cnn[-1].train_bias = True
|
|
if bool(conv_bias[i]) and bool(train_bias[i]) is False:
|
|
cnn[-1].train_bias = False
|
|
|
|
cnn[-1].train_weights = train_weights[i]
|
|
|
|
temp_image = cnn[layer_counter](temp_image)
|
|
logger.info(
|
|
(
|
|
f"After layer {layer_counter} (Convolution 2D layer): {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}, "
|
|
f"train bias: {cnn[-1].train_bias}, "
|
|
f"train weights: {cnn[-1].train_weights}, "
|
|
)
|
|
)
|
|
layer_counter += 1
|
|
|
|
# Activation Function
|
|
setting_understood = False
|
|
if activation_function.upper() == str("relu").upper():
|
|
cnn.append(torch.nn.ReLU())
|
|
setting_understood = True
|
|
elif activation_function.upper() == str("leaky relu").upper():
|
|
cnn.append(torch.nn.LeakyReLU(negative_slope=l_relu_negative_slope))
|
|
setting_understood = True
|
|
elif activation_function.upper() == str("tanh").upper():
|
|
cnn.append(torch.nn.Tanh())
|
|
setting_understood = True
|
|
elif activation_function.upper() == str("none").upper():
|
|
setting_understood = True
|
|
|
|
assert setting_understood
|
|
|
|
cnn[-1].train_bias = False
|
|
cnn[-1].train_weights = False
|
|
temp_image = cnn[layer_counter](temp_image)
|
|
logger.info(
|
|
(
|
|
f"After layer {layer_counter} (Activation function): {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}, "
|
|
f"train bias: {cnn[-1].train_bias}, "
|
|
f"train weights: {cnn[-1].train_weights} "
|
|
)
|
|
)
|
|
layer_counter += 1
|
|
|
|
if (pooling_kernel_size[i] > 0) and (pooling_stride[i] > 0):
|
|
setting_understood = False
|
|
if pooling_type.upper() == str("max").upper():
|
|
cnn.append(
|
|
torch.nn.MaxPool2d(
|
|
kernel_size=pooling_kernel_size[i], stride=pooling_stride[i]
|
|
)
|
|
)
|
|
setting_understood = True
|
|
elif pooling_type.upper() == str("average").upper():
|
|
cnn.append(
|
|
torch.nn.AvgPool2d(
|
|
kernel_size=pooling_kernel_size[i], stride=pooling_stride[i]
|
|
)
|
|
)
|
|
setting_understood = True
|
|
elif pooling_type.upper() == str("none").upper():
|
|
setting_understood = True
|
|
assert setting_understood
|
|
|
|
cnn[-1].train_bias = False
|
|
cnn[-1].train_weights = False
|
|
|
|
temp_image = cnn[layer_counter](temp_image)
|
|
logger.info(
|
|
(
|
|
f"After layer {layer_counter} (Pooling layer): {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}, "
|
|
f"train bias: {cnn[-1].train_bias}, "
|
|
f"train weights: {cnn[-1].train_weights} "
|
|
)
|
|
)
|
|
layer_counter += 1
|
|
|
|
if softmax_enable[i]:
|
|
cnn.append(
|
|
SoftmaxPower(
|
|
dim=1,
|
|
power=float(softmax_power),
|
|
mean_mode=bool(softmax_meanmode),
|
|
no_input_mode=bool(softmax_no_input_mode),
|
|
)
|
|
)
|
|
|
|
cnn[-1].train_bias = False
|
|
cnn[-1].train_weights = False
|
|
|
|
temp_image = cnn[layer_counter](temp_image)
|
|
logger.info(
|
|
(
|
|
f"After layer {layer_counter}: {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}, "
|
|
f"train bias: {cnn[-1].train_bias}, "
|
|
f"train weights: {cnn[-1].train_weights} "
|
|
)
|
|
)
|
|
layer_counter += 1
|
|
|
|
# Output layer
|
|
cnn.append(
|
|
torch.nn.Conv2d(
|
|
in_channels=int(temp_image.shape[1]),
|
|
out_channels=int(number_of_classes),
|
|
kernel_size=(int(temp_image.shape[2]), int(temp_image.shape[3])),
|
|
stride=1,
|
|
bias=bool(conv_bias[-1]),
|
|
)
|
|
)
|
|
|
|
# Load bias
|
|
if bool(conv_bias[-1]) and bool(train_bias[-1]) is False:
|
|
filename_load = os.path.join(
|
|
path_pretrained_weights_bias, str(f"bias_{len(conv_out_channel)}.npy")
|
|
)
|
|
logger.info(
|
|
f"Replace bias in conv2d {len(conv_out_channel)} with {filename_load}"
|
|
)
|
|
temp = np.load(filename_load)
|
|
assert torch.equal(
|
|
torch.Tensor(temp.shape),
|
|
torch.Tensor(cnn[-1]._parameters["bias"].shape),
|
|
)
|
|
cnn[-1]._parameters["bias"] = torch.tensor(
|
|
temp,
|
|
dtype=cnn[-1]._parameters["bias"].dtype,
|
|
requires_grad=False,
|
|
device=cnn[-1]._parameters["bias"].device,
|
|
)
|
|
|
|
# Load weights
|
|
if train_weights[-1] is False:
|
|
filename_load = os.path.join(
|
|
path_pretrained_weights_bias, str(f"weights_{len(conv_out_channel)}.npy")
|
|
)
|
|
logger.info(
|
|
f"Replace weights in conv2d {len(conv_out_channel)} with {filename_load}"
|
|
)
|
|
temp = np.load(filename_load)
|
|
assert torch.equal(
|
|
torch.Tensor(temp.shape),
|
|
torch.Tensor(cnn[-1]._parameters["weight"].shape),
|
|
)
|
|
cnn[-1]._parameters["weight"] = torch.tensor(
|
|
temp,
|
|
dtype=cnn[-1]._parameters["weight"].dtype,
|
|
requires_grad=False,
|
|
device=cnn[-1]._parameters["weight"].device,
|
|
)
|
|
|
|
cnn[-1].train_bias = True
|
|
if bool(conv_bias[i]) and bool(train_bias[i]) is False:
|
|
cnn[-1].train_bias = False
|
|
|
|
cnn[-1].train_weights = train_weights[i]
|
|
|
|
temp_image = cnn[layer_counter](temp_image)
|
|
logger.info(
|
|
(
|
|
f"After layer {layer_counter} (Output layer): {int(temp_image.shape[1])}, "
|
|
f"{int(temp_image.shape[2])}, "
|
|
f"{int(temp_image.shape[3])}, "
|
|
f"train bias: {cnn[-1].train_bias}, "
|
|
f"train weights: {cnn[-1].train_weights} "
|
|
)
|
|
)
|
|
layer_counter += 1
|
|
|
|
# Output layer needs to have a x and y dim of 1
|
|
assert int(temp_image.shape[2]) == 1
|
|
assert int(temp_image.shape[3]) == 1
|
|
|
|
return cnn
|