2024-07-10 16:16:41 +02:00
|
|
|
Code excerpt from David Rotermund, Mahbod Nouri, Alberto Garcia-Ortiz and Kaus R. Pawelzik trying to understand deep NNMF networks.
|
|
|
|
|
|
|
|
# Origin of the algorithm
|
|
|
|
|
2024-07-10 16:09:16 +02:00
|
|
|
Refinement of the approach for deep NNMF networks shown in:
|
|
|
|
|
|
|
|
```
|
|
|
|
Competitive performance and superior noise robustness of a non-negative deep convolutional spiking network
|
|
|
|
David Rotermund, Alberto Garcia-Ortiz, Kaus R. Pawelzik
|
|
|
|
https://www.biorxiv.org/content/10.1101/2023.04.22.537923v1
|
|
|
|
```
|
|
|
|
|
|
|
|
Now a normal ADAM optimiser will work.
|
|
|
|
|
|
|
|
The BP learning rule is taken from here (it was derived for a spike-based SbS system, but it works exactly the same for NNMF):
|
|
|
|
|
|
|
|
```
|
|
|
|
Back-Propagation Learning in Deep Spike-By-Spike Networks
|
|
|
|
David Rotermund and Klaus R. Pawelzik
|
|
|
|
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2019.00055/full
|
|
|
|
```
|
2024-07-10 15:43:31 +02:00
|
|
|
|
2024-07-10 16:16:41 +02:00
|
|
|
# Network structure
|
|
|
|
|
|
|
|
Note: A block like
|
|
|
|
|
|
|
|
```
|
|
|
|
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
|
|
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(3): L1NormLayer()
|
|
|
|
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
|
|
|
|
```
|
2024-07-10 16:16:59 +02:00
|
|
|
represents one(!) Conv2d NNMF Layer. We just see more of the innards that for a normal Conv2d.
|
2024-07-10 16:16:41 +02:00
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
Sequential(
|
|
|
|
(0): ReLU()
|
|
|
|
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
|
|
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(3): L1NormLayer()
|
|
|
|
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
|
|
|
|
(5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(6): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
|
|
|
|
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(8): ReLU()
|
|
|
|
(9): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
|
|
|
|
(10): Fold(output_size=torch.Size([12, 12]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(11): L1NormLayer()
|
|
|
|
(12): NNMF2d(128, 32, pfunctype=0, local_learning=False)
|
|
|
|
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(14): ReLU()
|
|
|
|
(15): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
|
|
(16): Fold(output_size=torch.Size([8, 8]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(17): L1NormLayer()
|
|
|
|
(18): NNMF2d(800, 64, pfunctype=0, local_learning=False)
|
|
|
|
(19): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(20): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
|
|
|
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(22): ReLU()
|
|
|
|
(23): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
|
|
|
|
(24): Fold(output_size=torch.Size([4, 4]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(25): L1NormLayer()
|
|
|
|
(26): NNMF2d(256, 64, pfunctype=0, local_learning=False)
|
|
|
|
(27): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
|
|
|
(28): ReLU()
|
|
|
|
(29): Unfold(kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
|
|
(30): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(31): L1NormLayer()
|
|
|
|
(32): NNMF2d(1024, 96, pfunctype=0, local_learning=False)
|
|
|
|
(33): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))
|
|
|
|
(34): ReLU()
|
|
|
|
(35): Unfold(kernel_size=(1, 1), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
|
|
(36): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
|
|
|
(37): L1NormLayer()
|
|
|
|
(38): NNMF2d(96, 10, pfunctype=0, local_learning=False)
|
|
|
|
(39): Conv2d(10, 10, kernel_size=(1, 1), stride=(1, 1))
|
|
|
|
(40): Softmax(dim=1)
|
|
|
|
(41): Flatten(start_dim=1, end_dim=-1)
|
|
|
|
)
|
|
|
|
|
|
|
|
Information about used parameters:
|
|
|
|
cnn_top: 14638
|
|
|
|
nnmf: 173344
|
|
|
|
batchnorm2d: 576
|
|
|
|
total number of parameter: 188558
|
|
|
|
```
|