diff --git a/NNMF2d.py b/NNMF2d.py index faf5f36..b84d083 100644 --- a/NNMF2d.py +++ b/NNMF2d.py @@ -7,7 +7,6 @@ class NNMF2d(torch.nn.Module): in_channels: int out_channels: int weight: torch.Tensor - bias: None | torch.Tensor iterations: int epsilon: float | None init_min: float @@ -16,8 +15,6 @@ class NNMF2d(torch.nn.Module): positive_function_type: int local_learning: bool local_learning_kl: bool - use_reconstruction: bool - skip_connection: bool def __init__( self, diff --git a/append_block.py b/append_block.py index 3885aca..a8de5d2 100644 --- a/append_block.py +++ b/append_block.py @@ -9,8 +9,6 @@ def append_block( out_channels: int, test_image: torch.Tensor, parameter_cnn_top: list[torch.nn.parameter.Parameter], - parameter_cnn_skip: list[torch.nn.parameter.Parameter], - parameter_cnn: list[torch.nn.parameter.Parameter], parameter_nnmf: list[torch.nn.parameter.Parameter], parameter_norm: list[torch.nn.parameter.Parameter], torch_device: torch.device, @@ -24,8 +22,6 @@ def append_block( iterations: int = 20, local_learning: bool = False, local_learning_kl: bool = False, - use_nnmf: bool = True, - use_identity: bool = False, momentum: float = 0.1, track_running_stats: bool = False, ) -> torch.Tensor: @@ -39,7 +35,6 @@ def append_block( kernel_size_internal[1] = test_image.shape[-1] # Main - network.append(torch.nn.ReLU()) test_image = network[-1](test_image) diff --git a/convert_log_to_numpy.py b/convert_log_to_numpy.py index b96c5d1..6a1343a 100644 --- a/convert_log_to_numpy.py +++ b/convert_log_to_numpy.py @@ -19,7 +19,8 @@ def get_data(path: str = "log_cnn"): for id in range(0, len(te)): np_temp[id, 0] = te[id].step np_temp[id, 1] = te[id].value - print(np_temp[:, 1]/100) + + print(np_temp[:, 1] / 100) return np_temp diff --git a/make_network.py b/make_network.py index 3eb9348..071d9fb 100644 --- a/make_network.py +++ b/make_network.py @@ -1,5 +1,4 @@ import torch -from SplitOnOffLayer import SplitOnOffLayer from append_block import append_block from L1NormLayer import L1NormLayer from NNMF2d import NNMF2d @@ -7,7 +6,6 @@ from append_parameter import append_parameter def make_network( - use_nnmf: bool, input_dim_x: int, input_dim_y: int, input_number_of_channel: int, @@ -67,11 +65,7 @@ def make_network( (1, 1), (1, 1), ], - local_learning: list[bool] = [False, False, False, False], - local_learning_kl: bool = True, - max_pool: bool = True, enable_onoff: bool = False, - use_identity: bool = False, ) -> tuple[ torch.nn.Sequential, list[list[torch.nn.parameter.Parameter]], @@ -86,14 +80,11 @@ def make_network( assert len(number_of_output_channels) == len(stride_pool) assert len(number_of_output_channels) == len(padding_pool) assert len(number_of_output_channels) == len(dilation_pool) - assert len(number_of_output_channels) == len(local_learning) if enable_onoff: input_number_of_channel *= 2 parameter_cnn_top: list[torch.nn.parameter.Parameter] = [] - parameter_cnn_skip: list[torch.nn.parameter.Parameter] = [] - parameter_cnn: list[torch.nn.parameter.Parameter] = [] parameter_nnmf: list[torch.nn.parameter.Parameter] = [] parameter_norm: list[torch.nn.parameter.Parameter] = [] @@ -104,10 +95,6 @@ def make_network( network = torch.nn.Sequential() network = network.to(torch_device) - if enable_onoff: - network.append(SplitOnOffLayer()) - test_image = network[-1](test_image) - for block_id in range(0, len(number_of_output_channels)): test_image = append_block( @@ -122,16 +109,10 @@ def make_network( positive_function_type=positive_function_type, beta=beta, iterations=iterations, - local_learning=local_learning[block_id], - local_learning_kl=local_learning_kl, torch_device=torch_device, parameter_cnn_top=parameter_cnn_top, - parameter_cnn_skip=parameter_cnn_skip, - parameter_cnn=parameter_cnn, parameter_nnmf=parameter_nnmf, parameter_norm=parameter_norm, - use_nnmf=use_nnmf, - use_identity=use_identity, ) if (kernel_size_pool[block_id][0] > 0) and (kernel_size_pool[block_id][1] > 0): @@ -214,16 +195,12 @@ def make_network( parameters: list[list[torch.nn.parameter.Parameter]] = [ parameter_cnn_top, - parameter_cnn_skip, - parameter_cnn, parameter_nnmf, parameter_norm, ] name_list: list[str] = [ "cnn_top", - "cnn_skip", - "cnn", "nnmf", "batchnorm2d", ] diff --git a/run_network.py b/run_network.py index 9257d59..e361a32 100644 --- a/run_network.py +++ b/run_network.py @@ -23,51 +23,26 @@ from make_optimize import make_optimize def main( lr_initial_nnmf: float = 0.01, - lr_initial_cnn: float = 0.001, lr_initial_cnn_top: float = 0.001, - lr_initial_cnn_skip: float = 0.001, lr_initial_norm: float = 0.001, iterations: int = 20, - use_nnmf: bool = True, dataset: str = "CIFAR10", # "CIFAR10", "FashionMNIST", "MNIST" - enable_onoff: bool = False, - local_learning_all: bool = False, - local_learning_0: bool = False, - local_learning_1: bool = False, - local_learning_2: bool = False, - local_learning_3: bool = False, - local_learning_kl: bool = False, - max_pool: bool = False, only_print_network: bool = False, - use_identity: bool = False, - da_auto_mode: bool = False, ) -> None: - if local_learning_all: - local_learning_0 = True - local_learning_1 = True - local_learning_2 = True - local_learning_3 = True + da_auto_mode: bool = False # Automatic Data Augmentation from TorchVision lr_limit: float = 1e-9 - if use_identity: - use_nnmf = True - torch_device: torch.device = ( torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") ) torch.set_default_dtype(torch.float32) # Some parameters - batch_size_train: int = 50#0 - batch_size_test: int = 50#0 + batch_size_train: int = 50 # 0 + batch_size_test: int = 50 # 0 number_of_epoch: int = 5000 - if use_nnmf: - prefix: str = "nnmf" - else: - prefix = "cnn" - loss_mode: int = 0 loss_coeffs_mse: float = 0.5 loss_coeffs_kldiv: float = 1.0 @@ -111,22 +86,11 @@ def main( parameters, name_list, ) = make_network( - use_nnmf=use_nnmf, input_dim_x=input_dim_x, input_dim_y=input_dim_y, input_number_of_channel=input_number_of_channel, iterations=iterations, - enable_onoff=enable_onoff, - local_learning=[ - local_learning_0, - local_learning_1, - local_learning_2, - local_learning_3, - ], - local_learning_kl=local_learning_kl, - max_pool=max_pool, torch_device=torch_device, - use_identity=use_identity, ) print(network) @@ -152,8 +116,6 @@ def main( parameters=parameters, lr_initial=[ lr_initial_cnn_top, - lr_initial_cnn_skip, - lr_initial_cnn, lr_initial_nnmf, lr_initial_norm, ], @@ -166,9 +128,7 @@ def main( else: my_string += "-_" - default_path: str = ( - f"{prefix}_iter{iterations}{my_string}0{local_learning_0}_1{local_learning_1}_2{local_learning_2}_3{local_learning_3}_kl{local_learning_kl}_max{max_pool}" - ) + default_path: str = f"iter{iterations}{my_string}" log_dir: str = f"log_{default_path}" tb = SummaryWriter(log_dir=log_dir)