From 6b5ce096d04a5f98110fc43c00d75f5a6e45b18f Mon Sep 17 00:00:00 2001 From: David Rotermund Date: Tue, 23 Jul 2024 10:53:16 +0200 Subject: [PATCH] Update README.md --- MLP_equivalent/README.md | 50 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) diff --git a/MLP_equivalent/README.md b/MLP_equivalent/README.md index 8b13789..cfbbb1f 100644 --- a/MLP_equivalent/README.md +++ b/MLP_equivalent/README.md @@ -1 +1,51 @@ +The last 1x1 layer of the NNMF network is a problem and had to be removed. +The structure is now: +``` +Sequential( + (0): ReLU() + (1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1)) + (2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (3): L1NormLayer() + (4): Conv2d(75, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) + (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (6): ReLU() + (7): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1)) + (8): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (9): ReLU() + (10): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2)) + (11): Fold(output_size=torch.Size([12, 12]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (12): L1NormLayer() + (13): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) + (14): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (15): ReLU() + (16): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1)) + (17): Fold(output_size=torch.Size([8, 8]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (18): L1NormLayer() + (19): Conv2d(800, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) + (20): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (21): ReLU() + (22): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1)) + (23): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (24): ReLU() + (25): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2)) + (26): Fold(output_size=torch.Size([4, 4]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (27): L1NormLayer() + (28): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) + (29): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False) + (30): ReLU() + (31): Unfold(kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(1, 1)) + (32): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (33): L1NormLayer() + (34): Conv2d(1024, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) + (35): ReLU() + (36): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1)) + (37): ReLU() + (38): Unfold(kernel_size=(1, 1), dilation=(1, 1), padding=(0, 0), stride=(1, 1)) + (39): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1) + (40): L1NormLayer() + (41): Conv2d(96, 10, kernel_size=(1, 1), stride=(1, 1), bias=False) + (42): Softmax(dim=1) + (43): Flatten(start_dim=1, end_dim=-1) +) +```