Add files via upload
This commit is contained in:
parent
9f69037199
commit
91f5d73627
13 changed files with 1228 additions and 0 deletions
13
MLP_equivalent/L1NormLayer.py
Normal file
13
MLP_equivalent/L1NormLayer.py
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class L1NormLayer(torch.nn.Module):
|
||||||
|
|
||||||
|
epsilon: float
|
||||||
|
|
||||||
|
def __init__(self, epsilon: float = 10e-20) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.epsilon = epsilon
|
||||||
|
|
||||||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||||
|
return input / (input.sum(dim=1, keepdim=True) + self.epsilon)
|
252
MLP_equivalent/NNMF2d.py
Normal file
252
MLP_equivalent/NNMF2d.py
Normal file
|
@ -0,0 +1,252 @@
|
||||||
|
import torch
|
||||||
|
from non_linear_weigth_function import non_linear_weigth_function
|
||||||
|
|
||||||
|
|
||||||
|
class NNMF2d(torch.nn.Module):
|
||||||
|
|
||||||
|
in_channels: int
|
||||||
|
out_channels: int
|
||||||
|
weight: torch.Tensor
|
||||||
|
iterations: int
|
||||||
|
epsilon: float | None
|
||||||
|
init_min: float
|
||||||
|
init_max: float
|
||||||
|
beta: torch.Tensor | None
|
||||||
|
positive_function_type: int
|
||||||
|
local_learning: bool
|
||||||
|
local_learning_kl: bool
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
device=None,
|
||||||
|
dtype=None,
|
||||||
|
iterations: int = 20,
|
||||||
|
epsilon: float | None = None,
|
||||||
|
init_min: float = 0.0,
|
||||||
|
init_max: float = 1.0,
|
||||||
|
beta: float | None = None,
|
||||||
|
positive_function_type: int = 0,
|
||||||
|
local_learning: bool = False,
|
||||||
|
local_learning_kl: bool = False,
|
||||||
|
) -> None:
|
||||||
|
factory_kwargs = {"device": device, "dtype": dtype}
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.positive_function_type = positive_function_type
|
||||||
|
self.init_min = init_min
|
||||||
|
self.init_max = init_max
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
|
||||||
|
self.iterations = iterations
|
||||||
|
self.local_learning = local_learning
|
||||||
|
self.local_learning_kl = local_learning_kl
|
||||||
|
|
||||||
|
self.weight = torch.nn.parameter.Parameter(
|
||||||
|
torch.empty((out_channels, in_channels), **factory_kwargs)
|
||||||
|
)
|
||||||
|
|
||||||
|
if beta is not None:
|
||||||
|
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
|
||||||
|
self.beta.data[0] = beta
|
||||||
|
else:
|
||||||
|
self.beta = None
|
||||||
|
|
||||||
|
self.reset_parameters()
|
||||||
|
self.functional_nnmf2d = FunctionalNNMF2d.apply
|
||||||
|
|
||||||
|
self.epsilon = epsilon
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
s: str = f"{self.in_channels}, {self.out_channels}"
|
||||||
|
|
||||||
|
if self.epsilon is not None:
|
||||||
|
s += f", epsilon={self.epsilon}"
|
||||||
|
s += f", pfunctype={self.positive_function_type}"
|
||||||
|
s += f", local_learning={self.local_learning}"
|
||||||
|
|
||||||
|
if self.local_learning:
|
||||||
|
s += f", local_learning_kl={self.local_learning_kl}"
|
||||||
|
|
||||||
|
return s
|
||||||
|
|
||||||
|
def reset_parameters(self) -> None:
|
||||||
|
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
|
||||||
|
|
||||||
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||||
|
|
||||||
|
positive_weights = non_linear_weigth_function(
|
||||||
|
self.weight, self.beta, self.positive_function_type
|
||||||
|
)
|
||||||
|
positive_weights = positive_weights / (
|
||||||
|
positive_weights.sum(dim=1, keepdim=True) + 10e-20
|
||||||
|
)
|
||||||
|
|
||||||
|
h_dyn = self.functional_nnmf2d(
|
||||||
|
input,
|
||||||
|
positive_weights,
|
||||||
|
self.out_channels,
|
||||||
|
self.iterations,
|
||||||
|
self.epsilon,
|
||||||
|
self.local_learning,
|
||||||
|
self.local_learning_kl,
|
||||||
|
)
|
||||||
|
|
||||||
|
return h_dyn
|
||||||
|
|
||||||
|
|
||||||
|
class FunctionalNNMF2d(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward( # type: ignore
|
||||||
|
ctx,
|
||||||
|
input: torch.Tensor,
|
||||||
|
weight: torch.Tensor,
|
||||||
|
out_channels: int,
|
||||||
|
iterations: int,
|
||||||
|
epsilon: float | None,
|
||||||
|
local_learning: bool,
|
||||||
|
local_learning_kl: bool,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
# Prepare h
|
||||||
|
h = torch.full(
|
||||||
|
(input.shape[0], out_channels, input.shape[-2], input.shape[-1]),
|
||||||
|
1.0 / float(out_channels),
|
||||||
|
device=input.device,
|
||||||
|
dtype=input.dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
h = h.movedim(1, -1)
|
||||||
|
input = input.movedim(1, -1)
|
||||||
|
for _ in range(0, iterations):
|
||||||
|
reconstruction = torch.nn.functional.linear(h, weight.T)
|
||||||
|
reconstruction += 1e-20
|
||||||
|
if epsilon is None:
|
||||||
|
h *= torch.nn.functional.linear((input / reconstruction), weight)
|
||||||
|
else:
|
||||||
|
h *= 1 + epsilon * torch.nn.functional.linear(
|
||||||
|
(input / reconstruction), weight
|
||||||
|
)
|
||||||
|
h /= h.sum(-1, keepdim=True) + 10e-20
|
||||||
|
h = h.movedim(-1, 1)
|
||||||
|
input = input.movedim(-1, 1)
|
||||||
|
|
||||||
|
# ###########################################################
|
||||||
|
# Save the necessary data for the backward pass
|
||||||
|
# ###########################################################
|
||||||
|
ctx.save_for_backward(input, weight, h)
|
||||||
|
ctx.local_learning = local_learning
|
||||||
|
ctx.local_learning_kl = local_learning_kl
|
||||||
|
|
||||||
|
assert torch.isfinite(h).all()
|
||||||
|
return h
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@torch.autograd.function.once_differentiable
|
||||||
|
def backward(ctx, grad_output: torch.Tensor) -> tuple[ # type: ignore
|
||||||
|
torch.Tensor,
|
||||||
|
torch.Tensor | None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
]:
|
||||||
|
|
||||||
|
# ##############################################
|
||||||
|
# Default values
|
||||||
|
# ##############################################
|
||||||
|
grad_weight: torch.Tensor | None = None
|
||||||
|
|
||||||
|
# ##############################################
|
||||||
|
# Get the variables back
|
||||||
|
# ##############################################
|
||||||
|
(input, weight, h) = ctx.saved_tensors
|
||||||
|
|
||||||
|
# The back prop gradient
|
||||||
|
h = h.movedim(1, -1)
|
||||||
|
grad_output = grad_output.movedim(1, -1)
|
||||||
|
input = input.movedim(1, -1)
|
||||||
|
big_r = torch.nn.functional.linear(h, weight.T)
|
||||||
|
big_r_div = 1.0 / (big_r + 1e-20)
|
||||||
|
|
||||||
|
factor_x_div_r = input * big_r_div
|
||||||
|
|
||||||
|
grad_input: torch.Tensor = (
|
||||||
|
torch.nn.functional.linear(h * grad_output, weight.T) * big_r_div
|
||||||
|
)
|
||||||
|
|
||||||
|
del big_r_div
|
||||||
|
|
||||||
|
# The weight gradient
|
||||||
|
if ctx.local_learning is False:
|
||||||
|
del big_r
|
||||||
|
|
||||||
|
grad_weight = -torch.nn.functional.linear(
|
||||||
|
h.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
h.shape[3],
|
||||||
|
).T,
|
||||||
|
(factor_x_div_r * grad_input)
|
||||||
|
.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
grad_input.shape[3],
|
||||||
|
)
|
||||||
|
.T,
|
||||||
|
)
|
||||||
|
|
||||||
|
grad_weight += torch.nn.functional.linear(
|
||||||
|
(h * grad_output)
|
||||||
|
.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
h.shape[3],
|
||||||
|
)
|
||||||
|
.T,
|
||||||
|
factor_x_div_r.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
grad_input.shape[3],
|
||||||
|
).T,
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
if ctx.local_learning_kl:
|
||||||
|
grad_weight = -torch.nn.functional.linear(
|
||||||
|
h.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
h.shape[3],
|
||||||
|
).T,
|
||||||
|
factor_x_div_r.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
grad_input.shape[3],
|
||||||
|
).T,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
grad_weight = -torch.nn.functional.linear(
|
||||||
|
h.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
h.shape[3],
|
||||||
|
).T,
|
||||||
|
(2 * (input - big_r))
|
||||||
|
.reshape(
|
||||||
|
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
|
||||||
|
grad_input.shape[3],
|
||||||
|
)
|
||||||
|
.T,
|
||||||
|
)
|
||||||
|
grad_input = grad_input.movedim(-1, 1)
|
||||||
|
assert torch.isfinite(grad_input).all()
|
||||||
|
assert torch.isfinite(grad_weight).all()
|
||||||
|
|
||||||
|
return (
|
||||||
|
grad_input,
|
||||||
|
grad_weight,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
None,
|
||||||
|
)
|
151
MLP_equivalent/append_block.py
Normal file
151
MLP_equivalent/append_block.py
Normal file
|
@ -0,0 +1,151 @@
|
||||||
|
import torch
|
||||||
|
from L1NormLayer import L1NormLayer
|
||||||
|
from append_parameter import append_parameter
|
||||||
|
|
||||||
|
|
||||||
|
def append_block(
|
||||||
|
network: torch.nn.Sequential,
|
||||||
|
out_channels: int,
|
||||||
|
test_image: torch.Tensor,
|
||||||
|
parameter_cnn_top: list[torch.nn.parameter.Parameter],
|
||||||
|
parameter_nnmf: list[torch.nn.parameter.Parameter],
|
||||||
|
parameter_norm: list[torch.nn.parameter.Parameter],
|
||||||
|
torch_device: torch.device,
|
||||||
|
dilation: tuple[int, int] | int = 1,
|
||||||
|
padding: tuple[int, int] | int = 0,
|
||||||
|
stride: tuple[int, int] | int = 1,
|
||||||
|
kernel_size: tuple[int, int] = (5, 5),
|
||||||
|
epsilon: float | None = None,
|
||||||
|
positive_function_type: int = 0,
|
||||||
|
beta: float | None = None,
|
||||||
|
iterations: int = 20,
|
||||||
|
local_learning: bool = False,
|
||||||
|
local_learning_kl: bool = False,
|
||||||
|
momentum: float = 0.1,
|
||||||
|
track_running_stats: bool = False,
|
||||||
|
last_layer: bool= False,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
kernel_size_internal: list[int] = [kernel_size[-2], kernel_size[-1]]
|
||||||
|
|
||||||
|
if kernel_size[0] < 1:
|
||||||
|
kernel_size_internal[0] = test_image.shape[-2]
|
||||||
|
|
||||||
|
if kernel_size[1] < 1:
|
||||||
|
kernel_size_internal[1] = test_image.shape[-1]
|
||||||
|
|
||||||
|
# Main
|
||||||
|
network.append(torch.nn.ReLU())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
# I need the output size
|
||||||
|
mock_output = (
|
||||||
|
torch.nn.functional.conv2d(
|
||||||
|
torch.zeros(
|
||||||
|
1,
|
||||||
|
1,
|
||||||
|
test_image.shape[2],
|
||||||
|
test_image.shape[3],
|
||||||
|
),
|
||||||
|
torch.zeros((1, 1, kernel_size_internal[0], kernel_size_internal[1])),
|
||||||
|
stride=stride,
|
||||||
|
padding=padding,
|
||||||
|
dilation=dilation,
|
||||||
|
)
|
||||||
|
.squeeze(0)
|
||||||
|
.squeeze(0)
|
||||||
|
)
|
||||||
|
network.append(
|
||||||
|
torch.nn.Unfold(
|
||||||
|
kernel_size=(kernel_size_internal[-2], kernel_size_internal[-1]),
|
||||||
|
dilation=dilation,
|
||||||
|
padding=padding,
|
||||||
|
stride=stride,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Fold(
|
||||||
|
output_size=mock_output.shape,
|
||||||
|
kernel_size=(1, 1),
|
||||||
|
dilation=1,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(L1NormLayer())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=test_image.shape[1],
|
||||||
|
out_channels=out_channels,
|
||||||
|
kernel_size=(1, 1),
|
||||||
|
bias=False,
|
||||||
|
).to(torch_device)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_nnmf)
|
||||||
|
|
||||||
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
||||||
|
network.append(
|
||||||
|
torch.nn.BatchNorm2d(
|
||||||
|
num_features=test_image.shape[1],
|
||||||
|
momentum=momentum,
|
||||||
|
track_running_stats=track_running_stats,
|
||||||
|
device=torch_device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
||||||
|
|
||||||
|
if last_layer is False:
|
||||||
|
|
||||||
|
network.append(torch.nn.ReLU())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=test_image.shape[1],
|
||||||
|
out_channels=out_channels,
|
||||||
|
kernel_size=(1, 1),
|
||||||
|
stride=(1, 1),
|
||||||
|
padding=(0, 0),
|
||||||
|
bias=True,
|
||||||
|
device=torch_device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# Init the cnn top layers 1x1 conv2d layers
|
||||||
|
for name, param in network[-1].named_parameters():
|
||||||
|
with torch.no_grad():
|
||||||
|
if name == "bias":
|
||||||
|
param.data *= 0
|
||||||
|
if name == "weight":
|
||||||
|
assert param.shape[-2] == 1
|
||||||
|
assert param.shape[-1] == 1
|
||||||
|
param[: param.shape[0], : param.shape[0], 0, 0] = torch.eye(
|
||||||
|
param.shape[0], dtype=param.dtype, device=param.device
|
||||||
|
)
|
||||||
|
param[param.shape[0] :, :, 0, 0] = 0
|
||||||
|
param[:, param.shape[0] :, 0, 0] = 0
|
||||||
|
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_cnn_top)
|
||||||
|
|
||||||
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
||||||
|
network.append(
|
||||||
|
torch.nn.BatchNorm2d(
|
||||||
|
num_features=test_image.shape[1],
|
||||||
|
device=torch_device,
|
||||||
|
momentum=momentum,
|
||||||
|
track_running_stats=track_running_stats,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
||||||
|
|
||||||
|
return test_image
|
8
MLP_equivalent/append_parameter.py
Normal file
8
MLP_equivalent/append_parameter.py
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def append_parameter(
|
||||||
|
module: torch.nn.Module, parameter_list: list[torch.nn.parameter.Parameter]
|
||||||
|
):
|
||||||
|
for netp in module.parameters():
|
||||||
|
parameter_list.append(netp)
|
30
MLP_equivalent/convert_log_to_numpy.py
Normal file
30
MLP_equivalent/convert_log_to_numpy.py
Normal file
|
@ -0,0 +1,30 @@
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
|
||||||
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
|
from tensorboard.backend.event_processing import event_accumulator # type: ignore
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def get_data(path: str = "log_cnn"):
|
||||||
|
acc = event_accumulator.EventAccumulator(path)
|
||||||
|
acc.Reload()
|
||||||
|
|
||||||
|
which_scalar = "Test Number Correct"
|
||||||
|
te = acc.Scalars(which_scalar)
|
||||||
|
|
||||||
|
np_temp = np.zeros((len(te), 2))
|
||||||
|
|
||||||
|
for id in range(0, len(te)):
|
||||||
|
np_temp[id, 0] = te[id].step
|
||||||
|
np_temp[id, 1] = te[id].value
|
||||||
|
|
||||||
|
print(np_temp[:, 1] / 100)
|
||||||
|
return np_temp
|
||||||
|
|
||||||
|
|
||||||
|
for path in glob.glob("log_*"):
|
||||||
|
print(path)
|
||||||
|
data = get_data(path)
|
||||||
|
np.save("data_" + path + ".npy", data)
|
31
MLP_equivalent/data_loader.py
Normal file
31
MLP_equivalent/data_loader.py
Normal file
|
@ -0,0 +1,31 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def data_loader(
|
||||||
|
pattern: torch.Tensor,
|
||||||
|
labels: torch.Tensor,
|
||||||
|
worker_init_fn,
|
||||||
|
generator,
|
||||||
|
batch_size: int = 128,
|
||||||
|
shuffle: bool = True,
|
||||||
|
torch_device: torch.device = torch.device("cpu"),
|
||||||
|
) -> torch.utils.data.dataloader.DataLoader:
|
||||||
|
|
||||||
|
assert pattern.ndim >= 3
|
||||||
|
|
||||||
|
pattern_storage: torch.Tensor = pattern.to(torch_device).type(torch.float32)
|
||||||
|
if pattern_storage.ndim == 3:
|
||||||
|
pattern_storage = pattern_storage.unsqueeze(1)
|
||||||
|
pattern_storage /= pattern_storage.max()
|
||||||
|
|
||||||
|
label_storage: torch.Tensor = labels.to(torch_device).type(torch.int64)
|
||||||
|
|
||||||
|
dataloader = torch.utils.data.DataLoader(
|
||||||
|
torch.utils.data.TensorDataset(pattern_storage, label_storage),
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=shuffle,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
generator=generator,
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataloader
|
147
MLP_equivalent/get_the_data.py
Normal file
147
MLP_equivalent/get_the_data.py
Normal file
|
@ -0,0 +1,147 @@
|
||||||
|
import torch
|
||||||
|
import torchvision # type: ignore
|
||||||
|
from data_loader import data_loader
|
||||||
|
|
||||||
|
from torchvision.transforms import v2 # type: ignore
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def get_the_data(
|
||||||
|
dataset: str,
|
||||||
|
batch_size_train: int,
|
||||||
|
batch_size_test: int,
|
||||||
|
torch_device: torch.device,
|
||||||
|
input_dim_x: int,
|
||||||
|
input_dim_y: int,
|
||||||
|
flip_p: float = 0.5,
|
||||||
|
jitter_brightness: float = 0.5,
|
||||||
|
jitter_contrast: float = 0.1,
|
||||||
|
jitter_saturation: float = 0.1,
|
||||||
|
jitter_hue: float = 0.15,
|
||||||
|
da_auto_mode: bool = False,
|
||||||
|
) -> tuple[
|
||||||
|
torch.utils.data.dataloader.DataLoader,
|
||||||
|
torch.utils.data.dataloader.DataLoader,
|
||||||
|
torchvision.transforms.Compose,
|
||||||
|
torchvision.transforms.Compose,
|
||||||
|
]:
|
||||||
|
if dataset == "MNIST":
|
||||||
|
tv_dataset_train = torchvision.datasets.MNIST(
|
||||||
|
root="data", train=True, download=True
|
||||||
|
)
|
||||||
|
tv_dataset_test = torchvision.datasets.MNIST(
|
||||||
|
root="data", train=False, download=True
|
||||||
|
)
|
||||||
|
elif dataset == "FashionMNIST":
|
||||||
|
tv_dataset_train = torchvision.datasets.FashionMNIST(
|
||||||
|
root="data", train=True, download=True
|
||||||
|
)
|
||||||
|
tv_dataset_test = torchvision.datasets.FashionMNIST(
|
||||||
|
root="data", train=False, download=True
|
||||||
|
)
|
||||||
|
elif dataset == "CIFAR10":
|
||||||
|
tv_dataset_train = torchvision.datasets.CIFAR10(
|
||||||
|
root="data", train=True, download=True
|
||||||
|
)
|
||||||
|
tv_dataset_test = torchvision.datasets.CIFAR10(
|
||||||
|
root="data", train=False, download=True
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("This dataset is not implemented.")
|
||||||
|
|
||||||
|
def seed_worker(worker_id):
|
||||||
|
worker_seed = torch.initial_seed() % 2**32
|
||||||
|
np.random.seed(worker_seed)
|
||||||
|
torch.random.seed(worker_seed)
|
||||||
|
|
||||||
|
g = torch.Generator()
|
||||||
|
g.manual_seed(0)
|
||||||
|
|
||||||
|
if dataset == "MNIST" or dataset == "FashionMNIST":
|
||||||
|
|
||||||
|
train_dataloader = data_loader(
|
||||||
|
torch_device=torch_device,
|
||||||
|
batch_size=batch_size_train,
|
||||||
|
pattern=tv_dataset_train.data,
|
||||||
|
labels=tv_dataset_train.targets,
|
||||||
|
shuffle=True,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
generator=g,
|
||||||
|
)
|
||||||
|
|
||||||
|
test_dataloader = data_loader(
|
||||||
|
torch_device=torch_device,
|
||||||
|
batch_size=batch_size_test,
|
||||||
|
pattern=tv_dataset_test.data,
|
||||||
|
labels=tv_dataset_test.targets,
|
||||||
|
shuffle=False,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
generator=g,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Data augmentation filter
|
||||||
|
test_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
|
||||||
|
)
|
||||||
|
|
||||||
|
train_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[torchvision.transforms.RandomCrop((input_dim_x, input_dim_y))],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
|
||||||
|
train_dataloader = data_loader(
|
||||||
|
torch_device=torch_device,
|
||||||
|
batch_size=batch_size_train,
|
||||||
|
pattern=torch.tensor(tv_dataset_train.data).movedim(-1, 1),
|
||||||
|
labels=torch.tensor(tv_dataset_train.targets),
|
||||||
|
shuffle=True,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
generator=g,
|
||||||
|
)
|
||||||
|
|
||||||
|
test_dataloader = data_loader(
|
||||||
|
torch_device=torch_device,
|
||||||
|
batch_size=batch_size_test,
|
||||||
|
pattern=torch.tensor(tv_dataset_test.data).movedim(-1, 1),
|
||||||
|
labels=torch.tensor(tv_dataset_test.targets),
|
||||||
|
shuffle=False,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
generator=g,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Data augmentation filter
|
||||||
|
test_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
|
||||||
|
)
|
||||||
|
|
||||||
|
if da_auto_mode:
|
||||||
|
train_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[
|
||||||
|
v2.AutoAugment(
|
||||||
|
policy=torchvision.transforms.AutoAugmentPolicy(
|
||||||
|
v2.AutoAugmentPolicy.CIFAR10
|
||||||
|
)
|
||||||
|
),
|
||||||
|
torchvision.transforms.CenterCrop((input_dim_x, input_dim_y)),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
train_processing_chain = torchvision.transforms.Compose(
|
||||||
|
transforms=[
|
||||||
|
torchvision.transforms.RandomCrop((input_dim_x, input_dim_y)),
|
||||||
|
torchvision.transforms.RandomHorizontalFlip(p=flip_p),
|
||||||
|
torchvision.transforms.ColorJitter(
|
||||||
|
brightness=jitter_brightness,
|
||||||
|
contrast=jitter_contrast,
|
||||||
|
saturation=jitter_saturation,
|
||||||
|
hue=jitter_hue,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return (
|
||||||
|
train_dataloader,
|
||||||
|
test_dataloader,
|
||||||
|
train_processing_chain,
|
||||||
|
test_processing_chain,
|
||||||
|
)
|
64
MLP_equivalent/loss_function.py
Normal file
64
MLP_equivalent/loss_function.py
Normal file
|
@ -0,0 +1,64 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
# loss_mode == 0: "normal" SbS loss function mixture
|
||||||
|
# loss_mode == 1: cross_entropy
|
||||||
|
def loss_function(
|
||||||
|
h: torch.Tensor,
|
||||||
|
labels: torch.Tensor,
|
||||||
|
loss_mode: int = 0,
|
||||||
|
number_of_output_neurons: int = 10,
|
||||||
|
loss_coeffs_mse: float = 0.0,
|
||||||
|
loss_coeffs_kldiv: float = 0.0,
|
||||||
|
) -> torch.Tensor | None:
|
||||||
|
|
||||||
|
assert loss_mode >= 0
|
||||||
|
assert loss_mode <= 1
|
||||||
|
|
||||||
|
assert h.ndim == 2
|
||||||
|
|
||||||
|
if loss_mode == 0:
|
||||||
|
|
||||||
|
# Convert label into one hot
|
||||||
|
target_one_hot: torch.Tensor = torch.zeros(
|
||||||
|
(
|
||||||
|
labels.shape[0],
|
||||||
|
number_of_output_neurons,
|
||||||
|
),
|
||||||
|
device=h.device,
|
||||||
|
dtype=h.dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
target_one_hot.scatter_(
|
||||||
|
1,
|
||||||
|
labels.to(h.device).unsqueeze(1),
|
||||||
|
torch.ones(
|
||||||
|
(labels.shape[0], 1),
|
||||||
|
device=h.device,
|
||||||
|
dtype=h.dtype,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
my_loss: torch.Tensor = ((h - target_one_hot) ** 2).sum(dim=0).mean(
|
||||||
|
dim=0
|
||||||
|
) * loss_coeffs_mse
|
||||||
|
|
||||||
|
my_loss = (
|
||||||
|
my_loss
|
||||||
|
+ (
|
||||||
|
(target_one_hot * torch.log((target_one_hot + 1e-20) / (h + 1e-20)))
|
||||||
|
.sum(dim=0)
|
||||||
|
.mean(dim=0)
|
||||||
|
)
|
||||||
|
* loss_coeffs_kldiv
|
||||||
|
)
|
||||||
|
|
||||||
|
my_loss = my_loss / (abs(loss_coeffs_kldiv) + abs(loss_coeffs_mse))
|
||||||
|
|
||||||
|
return my_loss
|
||||||
|
|
||||||
|
elif loss_mode == 1:
|
||||||
|
my_loss = torch.nn.functional.cross_entropy(h, labels.to(h.device))
|
||||||
|
return my_loss
|
||||||
|
else:
|
||||||
|
return None
|
208
MLP_equivalent/make_network.py
Normal file
208
MLP_equivalent/make_network.py
Normal file
|
@ -0,0 +1,208 @@
|
||||||
|
import torch
|
||||||
|
from append_block import append_block
|
||||||
|
from L1NormLayer import L1NormLayer
|
||||||
|
from append_parameter import append_parameter
|
||||||
|
|
||||||
|
|
||||||
|
def make_network(
|
||||||
|
input_dim_x: int,
|
||||||
|
input_dim_y: int,
|
||||||
|
input_number_of_channel: int,
|
||||||
|
iterations: int,
|
||||||
|
torch_device: torch.device,
|
||||||
|
epsilon: bool | None = None,
|
||||||
|
positive_function_type: int = 0,
|
||||||
|
beta: float | None = None,
|
||||||
|
# Conv:
|
||||||
|
number_of_output_channels: list[int] = [32 * 1, 64 * 1, 96 * 1, 10],
|
||||||
|
kernel_size_conv: list[tuple[int, int]] = [
|
||||||
|
(5, 5),
|
||||||
|
(5, 5),
|
||||||
|
(-1, -1), # Take the whole input image x and y size
|
||||||
|
(1, 1),
|
||||||
|
],
|
||||||
|
stride_conv: list[tuple[int, int]] = [
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
],
|
||||||
|
padding_conv: list[tuple[int, int]] = [
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
],
|
||||||
|
dilation_conv: list[tuple[int, int]] = [
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
],
|
||||||
|
# Pool:
|
||||||
|
kernel_size_pool: list[tuple[int, int]] = [
|
||||||
|
(2, 2),
|
||||||
|
(2, 2),
|
||||||
|
(-1, -1), # No pooling layer
|
||||||
|
(-1, -1), # No pooling layer
|
||||||
|
],
|
||||||
|
stride_pool: list[tuple[int, int]] = [
|
||||||
|
(2, 2),
|
||||||
|
(2, 2),
|
||||||
|
(-1, -1),
|
||||||
|
(-1, -1),
|
||||||
|
],
|
||||||
|
padding_pool: list[tuple[int, int]] = [
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
(0, 0),
|
||||||
|
],
|
||||||
|
dilation_pool: list[tuple[int, int]] = [
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
(1, 1),
|
||||||
|
],
|
||||||
|
enable_onoff: bool = False,
|
||||||
|
) -> tuple[
|
||||||
|
torch.nn.Sequential,
|
||||||
|
list[list[torch.nn.parameter.Parameter]],
|
||||||
|
list[str],
|
||||||
|
]:
|
||||||
|
|
||||||
|
assert len(number_of_output_channels) == len(kernel_size_conv)
|
||||||
|
assert len(number_of_output_channels) == len(stride_conv)
|
||||||
|
assert len(number_of_output_channels) == len(padding_conv)
|
||||||
|
assert len(number_of_output_channels) == len(dilation_conv)
|
||||||
|
assert len(number_of_output_channels) == len(kernel_size_pool)
|
||||||
|
assert len(number_of_output_channels) == len(stride_pool)
|
||||||
|
assert len(number_of_output_channels) == len(padding_pool)
|
||||||
|
assert len(number_of_output_channels) == len(dilation_pool)
|
||||||
|
|
||||||
|
if enable_onoff:
|
||||||
|
input_number_of_channel *= 2
|
||||||
|
|
||||||
|
parameter_cnn_top: list[torch.nn.parameter.Parameter] = []
|
||||||
|
parameter_nnmf: list[torch.nn.parameter.Parameter] = []
|
||||||
|
parameter_norm: list[torch.nn.parameter.Parameter] = []
|
||||||
|
|
||||||
|
test_image = torch.ones(
|
||||||
|
(1, input_number_of_channel, input_dim_x, input_dim_y), device=torch_device
|
||||||
|
)
|
||||||
|
|
||||||
|
network = torch.nn.Sequential()
|
||||||
|
network = network.to(torch_device)
|
||||||
|
|
||||||
|
for block_id in range(0, len(number_of_output_channels)):
|
||||||
|
|
||||||
|
test_image = append_block(
|
||||||
|
network=network,
|
||||||
|
out_channels=number_of_output_channels[block_id],
|
||||||
|
test_image=test_image,
|
||||||
|
dilation=dilation_conv[block_id],
|
||||||
|
padding=padding_conv[block_id],
|
||||||
|
stride=stride_conv[block_id],
|
||||||
|
kernel_size=kernel_size_conv[block_id],
|
||||||
|
epsilon=epsilon,
|
||||||
|
positive_function_type=positive_function_type,
|
||||||
|
beta=beta,
|
||||||
|
iterations=iterations,
|
||||||
|
torch_device=torch_device,
|
||||||
|
parameter_cnn_top=parameter_cnn_top,
|
||||||
|
parameter_nnmf=parameter_nnmf,
|
||||||
|
parameter_norm=parameter_norm,
|
||||||
|
last_layer = block_id == len(number_of_output_channels)-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
if (kernel_size_pool[block_id][0] > 0) and (kernel_size_pool[block_id][1] > 0):
|
||||||
|
network.append(torch.nn.ReLU())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
mock_output = (
|
||||||
|
torch.nn.functional.conv2d(
|
||||||
|
torch.zeros(
|
||||||
|
1,
|
||||||
|
1,
|
||||||
|
test_image.shape[2],
|
||||||
|
test_image.shape[3],
|
||||||
|
),
|
||||||
|
torch.zeros((1, 1, 2, 2)),
|
||||||
|
stride=(2, 2),
|
||||||
|
padding=(0, 0),
|
||||||
|
dilation=(1, 1),
|
||||||
|
)
|
||||||
|
.squeeze(0)
|
||||||
|
.squeeze(0)
|
||||||
|
)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Unfold(
|
||||||
|
kernel_size=(2, 2),
|
||||||
|
stride=(2, 2),
|
||||||
|
padding=(0, 0),
|
||||||
|
dilation=(1, 1),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Fold(
|
||||||
|
output_size=mock_output.shape,
|
||||||
|
kernel_size=(1, 1),
|
||||||
|
dilation=1,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(L1NormLayer())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=test_image.shape[1],
|
||||||
|
out_channels=test_image.shape[1] // 4,
|
||||||
|
kernel_size=(1, 1),
|
||||||
|
bias=False,
|
||||||
|
).to(torch_device)
|
||||||
|
)
|
||||||
|
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_nnmf)
|
||||||
|
|
||||||
|
network.append(
|
||||||
|
torch.nn.BatchNorm2d(
|
||||||
|
num_features=test_image.shape[1],
|
||||||
|
device=torch_device,
|
||||||
|
momentum=0.1,
|
||||||
|
track_running_stats=False,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
||||||
|
|
||||||
|
network.append(torch.nn.Softmax(dim=1))
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
network.append(torch.nn.Flatten())
|
||||||
|
test_image = network[-1](test_image)
|
||||||
|
|
||||||
|
parameters: list[list[torch.nn.parameter.Parameter]] = [
|
||||||
|
parameter_cnn_top,
|
||||||
|
parameter_nnmf,
|
||||||
|
parameter_norm,
|
||||||
|
]
|
||||||
|
|
||||||
|
name_list: list[str] = [
|
||||||
|
"cnn_top",
|
||||||
|
"nnmf",
|
||||||
|
"batchnorm2d",
|
||||||
|
]
|
||||||
|
|
||||||
|
return (
|
||||||
|
network,
|
||||||
|
parameters,
|
||||||
|
name_list,
|
||||||
|
)
|
32
MLP_equivalent/make_optimize.py
Normal file
32
MLP_equivalent/make_optimize.py
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def make_optimize(
|
||||||
|
parameters: list[list[torch.nn.parameter.Parameter]],
|
||||||
|
lr_initial: list[float],
|
||||||
|
eps=1e-10,
|
||||||
|
) -> tuple[
|
||||||
|
list[torch.optim.Adam | None],
|
||||||
|
list[torch.optim.lr_scheduler.ReduceLROnPlateau | None],
|
||||||
|
]:
|
||||||
|
list_optimizer: list[torch.optim.Adam | None] = []
|
||||||
|
list_lr_scheduler: list[torch.optim.lr_scheduler.ReduceLROnPlateau | None] = []
|
||||||
|
|
||||||
|
assert len(parameters) == len(lr_initial)
|
||||||
|
|
||||||
|
for i in range(0, len(parameters)):
|
||||||
|
if len(parameters[i]) > 0:
|
||||||
|
list_optimizer.append(torch.optim.Adam(parameters[i], lr=lr_initial[i]))
|
||||||
|
else:
|
||||||
|
list_optimizer.append(None)
|
||||||
|
|
||||||
|
for i in range(0, len(list_optimizer)):
|
||||||
|
if list_optimizer[i] is not None:
|
||||||
|
pass
|
||||||
|
list_lr_scheduler.append(
|
||||||
|
torch.optim.lr_scheduler.ReduceLROnPlateau(list_optimizer[i], eps=eps) # type: ignore
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
list_lr_scheduler.append(None)
|
||||||
|
|
||||||
|
return (list_optimizer, list_lr_scheduler)
|
26
MLP_equivalent/non_linear_weigth_function.py
Normal file
26
MLP_equivalent/non_linear_weigth_function.py
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def non_linear_weigth_function(
|
||||||
|
weight: torch.Tensor, beta: torch.Tensor | None, positive_function_type: int
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
if positive_function_type == 0:
|
||||||
|
positive_weights = torch.abs(weight)
|
||||||
|
|
||||||
|
elif positive_function_type == 1:
|
||||||
|
assert beta is not None
|
||||||
|
positive_weights = weight
|
||||||
|
max_value = torch.abs(positive_weights).max()
|
||||||
|
if max_value > 80:
|
||||||
|
positive_weights = 80.0 * positive_weights / max_value
|
||||||
|
positive_weights = torch.exp((torch.tanh(beta) + 1.0) * 0.5 * positive_weights)
|
||||||
|
|
||||||
|
elif positive_function_type == 2:
|
||||||
|
assert beta is not None
|
||||||
|
positive_weights = (torch.tanh(beta * weight) + 1.0) * 0.5
|
||||||
|
|
||||||
|
else:
|
||||||
|
positive_weights = weight
|
||||||
|
|
||||||
|
return positive_weights
|
15
MLP_equivalent/plot.py
Normal file
15
MLP_equivalent/plot.py
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
data = np.load("data_log.npy")
|
||||||
|
plt.loglog(
|
||||||
|
data[:, 0],
|
||||||
|
100.0 * (1.0 - data[:, 1] / 10000.0),
|
||||||
|
"k",
|
||||||
|
)
|
||||||
|
|
||||||
|
plt.legend()
|
||||||
|
plt.xlabel("Epoch")
|
||||||
|
plt.ylabel("Error [%]")
|
||||||
|
plt.title("CIFAR10")
|
||||||
|
plt.show()
|
251
MLP_equivalent/run_network.py
Normal file
251
MLP_equivalent/run_network.py
Normal file
|
@ -0,0 +1,251 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
|
import argh
|
||||||
|
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
rand_seed: int = 21
|
||||||
|
torch.manual_seed(rand_seed)
|
||||||
|
torch.cuda.manual_seed(rand_seed)
|
||||||
|
np.random.seed(rand_seed)
|
||||||
|
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from make_network import make_network
|
||||||
|
from get_the_data import get_the_data
|
||||||
|
from loss_function import loss_function
|
||||||
|
from make_optimize import make_optimize
|
||||||
|
|
||||||
|
|
||||||
|
def main(
|
||||||
|
lr_initial_nnmf: float = 0.01,
|
||||||
|
lr_initial_cnn_top: float = 0.001,
|
||||||
|
lr_initial_norm: float = 0.001,
|
||||||
|
iterations: int = 20,
|
||||||
|
dataset: str = "CIFAR10", # "CIFAR10", "FashionMNIST", "MNIST"
|
||||||
|
only_print_network: bool = False,
|
||||||
|
) -> None:
|
||||||
|
|
||||||
|
da_auto_mode: bool = False # Automatic Data Augmentation from TorchVision
|
||||||
|
lr_limit: float = 1e-9
|
||||||
|
|
||||||
|
torch_device: torch.device = (
|
||||||
|
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
|
)
|
||||||
|
torch.set_default_dtype(torch.float32)
|
||||||
|
|
||||||
|
# Some parameters
|
||||||
|
batch_size_train: int = 50 # 0
|
||||||
|
batch_size_test: int = 50 # 0
|
||||||
|
number_of_epoch: int = 5000
|
||||||
|
|
||||||
|
loss_mode: int = 0
|
||||||
|
loss_coeffs_mse: float = 0.5
|
||||||
|
loss_coeffs_kldiv: float = 1.0
|
||||||
|
print(
|
||||||
|
"loss_mode: ",
|
||||||
|
loss_mode,
|
||||||
|
"loss_coeffs_mse: ",
|
||||||
|
loss_coeffs_mse,
|
||||||
|
"loss_coeffs_kldiv: ",
|
||||||
|
loss_coeffs_kldiv,
|
||||||
|
)
|
||||||
|
|
||||||
|
if dataset == "MNIST" or dataset == "FashionMNIST":
|
||||||
|
input_number_of_channel: int = 1
|
||||||
|
input_dim_x: int = 24
|
||||||
|
input_dim_y: int = 24
|
||||||
|
else:
|
||||||
|
input_number_of_channel = 3
|
||||||
|
input_dim_x = 28
|
||||||
|
input_dim_y = 28
|
||||||
|
|
||||||
|
train_dataloader, test_dataloader, train_processing_chain, test_processing_chain = (
|
||||||
|
get_the_data(
|
||||||
|
dataset,
|
||||||
|
batch_size_train,
|
||||||
|
batch_size_test,
|
||||||
|
torch_device,
|
||||||
|
input_dim_x,
|
||||||
|
input_dim_y,
|
||||||
|
flip_p=0.5,
|
||||||
|
jitter_brightness=0.5,
|
||||||
|
jitter_contrast=0.1,
|
||||||
|
jitter_saturation=0.1,
|
||||||
|
jitter_hue=0.15,
|
||||||
|
da_auto_mode=da_auto_mode,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
(
|
||||||
|
network,
|
||||||
|
parameters,
|
||||||
|
name_list,
|
||||||
|
) = make_network(
|
||||||
|
input_dim_x=input_dim_x,
|
||||||
|
input_dim_y=input_dim_y,
|
||||||
|
input_number_of_channel=input_number_of_channel,
|
||||||
|
iterations=iterations,
|
||||||
|
torch_device=torch_device,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(network)
|
||||||
|
|
||||||
|
print()
|
||||||
|
print("Information about used parameters:")
|
||||||
|
number_of_parameter: int = 0
|
||||||
|
for i, parameter_list in enumerate(parameters):
|
||||||
|
count_parameter: int = 0
|
||||||
|
for parameter_element in parameter_list:
|
||||||
|
count_parameter += parameter_element.numel()
|
||||||
|
print(f"{name_list[i]}: {count_parameter}")
|
||||||
|
number_of_parameter += count_parameter
|
||||||
|
print(f"total number of parameter: {number_of_parameter}")
|
||||||
|
|
||||||
|
if only_print_network:
|
||||||
|
exit()
|
||||||
|
|
||||||
|
(
|
||||||
|
optimizers,
|
||||||
|
lr_schedulers,
|
||||||
|
) = make_optimize(
|
||||||
|
parameters=parameters,
|
||||||
|
lr_initial=[
|
||||||
|
lr_initial_cnn_top,
|
||||||
|
lr_initial_nnmf,
|
||||||
|
lr_initial_norm,
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
my_string: str = "_lr_"
|
||||||
|
for i in range(0, len(lr_schedulers)):
|
||||||
|
if lr_schedulers[i] is not None:
|
||||||
|
my_string += f"{lr_schedulers[i].get_last_lr()[0]:.4e}_" # type: ignore
|
||||||
|
else:
|
||||||
|
my_string += "-_"
|
||||||
|
|
||||||
|
default_path: str = f"iter{iterations}{my_string}"
|
||||||
|
log_dir: str = f"log_{default_path}"
|
||||||
|
|
||||||
|
tb = SummaryWriter(log_dir=log_dir)
|
||||||
|
|
||||||
|
for epoch_id in range(0, number_of_epoch):
|
||||||
|
print()
|
||||||
|
print(f"Epoch: {epoch_id}")
|
||||||
|
t_start: float = time.perf_counter()
|
||||||
|
|
||||||
|
train_loss: float = 0.0
|
||||||
|
train_correct: int = 0
|
||||||
|
train_number: int = 0
|
||||||
|
test_correct: int = 0
|
||||||
|
test_number: int = 0
|
||||||
|
|
||||||
|
# Switch the network into training mode
|
||||||
|
network.train()
|
||||||
|
|
||||||
|
# This runs in total for one epoch split up into mini-batches
|
||||||
|
for image, target in train_dataloader:
|
||||||
|
|
||||||
|
# Clean the gradient
|
||||||
|
for i in range(0, len(optimizers)):
|
||||||
|
if optimizers[i] is not None:
|
||||||
|
optimizers[i].zero_grad() # type: ignore
|
||||||
|
|
||||||
|
output = network(train_processing_chain(image))
|
||||||
|
|
||||||
|
loss = loss_function(
|
||||||
|
h=output,
|
||||||
|
labels=target,
|
||||||
|
number_of_output_neurons=output.shape[1],
|
||||||
|
loss_mode=loss_mode,
|
||||||
|
loss_coeffs_mse=loss_coeffs_mse,
|
||||||
|
loss_coeffs_kldiv=loss_coeffs_kldiv,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss is not None
|
||||||
|
train_loss += loss.item()
|
||||||
|
train_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
|
||||||
|
train_number += target.shape[0]
|
||||||
|
|
||||||
|
# Calculate backprop
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# Update the parameter
|
||||||
|
# Clean the gradient
|
||||||
|
for i in range(0, len(optimizers)):
|
||||||
|
if optimizers[i] is not None:
|
||||||
|
optimizers[i].step() # type: ignore
|
||||||
|
|
||||||
|
perfomance_train_correct: float = 100.0 * train_correct / train_number
|
||||||
|
# Update the learning rate
|
||||||
|
for i in range(0, len(lr_schedulers)):
|
||||||
|
if lr_schedulers[i] is not None:
|
||||||
|
lr_schedulers[i].step(train_loss) # type: ignore
|
||||||
|
|
||||||
|
my_string = "Actual lr: "
|
||||||
|
for i in range(0, len(lr_schedulers)):
|
||||||
|
if lr_schedulers[i] is not None:
|
||||||
|
my_string += f" {lr_schedulers[i].get_last_lr()[0]:.4e} " # type: ignore
|
||||||
|
else:
|
||||||
|
my_string += " --- "
|
||||||
|
|
||||||
|
print(my_string)
|
||||||
|
t_training: float = time.perf_counter()
|
||||||
|
|
||||||
|
# Switch the network into evalution mode
|
||||||
|
network.eval()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
|
||||||
|
for image, target in test_dataloader:
|
||||||
|
output = network(test_processing_chain(image))
|
||||||
|
|
||||||
|
test_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
|
||||||
|
test_number += target.shape[0]
|
||||||
|
|
||||||
|
t_testing = time.perf_counter()
|
||||||
|
|
||||||
|
perfomance_test_correct: float = 100.0 * test_correct / test_number
|
||||||
|
|
||||||
|
tb.add_scalar("Train Loss", train_loss / float(train_number), epoch_id)
|
||||||
|
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
|
||||||
|
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Training: Loss={train_loss / float(train_number):.5f} Correct={perfomance_train_correct:.2f}%"
|
||||||
|
)
|
||||||
|
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
|
||||||
|
print(
|
||||||
|
f"Time: Training={(t_training - t_start):.1f}sec, Testing={(t_testing - t_training):.1f}sec"
|
||||||
|
)
|
||||||
|
|
||||||
|
tb.flush()
|
||||||
|
|
||||||
|
lr_check: list[float] = []
|
||||||
|
for i in range(0, len(lr_schedulers)):
|
||||||
|
if lr_schedulers[i] is not None:
|
||||||
|
lr_check.append(lr_schedulers[i].get_last_lr()[0]) # type: ignore
|
||||||
|
|
||||||
|
lr_check_max = float(torch.tensor(lr_check).max())
|
||||||
|
|
||||||
|
if lr_check_max < lr_limit:
|
||||||
|
torch.save(network, f"Model_{default_path}.pt")
|
||||||
|
tb.close()
|
||||||
|
print("Done (lr_limit)")
|
||||||
|
return
|
||||||
|
|
||||||
|
torch.save(network, f"Model_{default_path}.pt")
|
||||||
|
print()
|
||||||
|
|
||||||
|
tb.close()
|
||||||
|
print("Done (loop end)")
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
argh.dispatch_command(main)
|
Loading…
Reference in a new issue