Update README.md
This commit is contained in:
parent
388b83c264
commit
d8fc9f29a4
1 changed files with 69 additions and 0 deletions
69
README.md
69
README.md
|
@ -1,3 +1,7 @@
|
|||
Code excerpt from David Rotermund, Mahbod Nouri, Alberto Garcia-Ortiz and Kaus R. Pawelzik trying to understand deep NNMF networks.
|
||||
|
||||
# Origin of the algorithm
|
||||
|
||||
Refinement of the approach for deep NNMF networks shown in:
|
||||
|
||||
```
|
||||
|
@ -16,3 +20,68 @@ David Rotermund and Klaus R. Pawelzik
|
|||
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2019.00055/full
|
||||
```
|
||||
|
||||
# Network structure
|
||||
|
||||
Note: A block like
|
||||
|
||||
```
|
||||
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
||||
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(3): L1NormLayer()
|
||||
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
|
||||
```
|
||||
represents one(!) Con2d NNMF Layer. We just see more of the innards that for a normal Conv2d.
|
||||
|
||||
|
||||
```
|
||||
Sequential(
|
||||
(0): ReLU()
|
||||
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
||||
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(3): L1NormLayer()
|
||||
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
|
||||
(5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(6): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
|
||||
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(8): ReLU()
|
||||
(9): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
|
||||
(10): Fold(output_size=torch.Size([12, 12]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(11): L1NormLayer()
|
||||
(12): NNMF2d(128, 32, pfunctype=0, local_learning=False)
|
||||
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(14): ReLU()
|
||||
(15): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
||||
(16): Fold(output_size=torch.Size([8, 8]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(17): L1NormLayer()
|
||||
(18): NNMF2d(800, 64, pfunctype=0, local_learning=False)
|
||||
(19): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(20): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
||||
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(22): ReLU()
|
||||
(23): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
|
||||
(24): Fold(output_size=torch.Size([4, 4]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(25): L1NormLayer()
|
||||
(26): NNMF2d(256, 64, pfunctype=0, local_learning=False)
|
||||
(27): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
|
||||
(28): ReLU()
|
||||
(29): Unfold(kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
||||
(30): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(31): L1NormLayer()
|
||||
(32): NNMF2d(1024, 96, pfunctype=0, local_learning=False)
|
||||
(33): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))
|
||||
(34): ReLU()
|
||||
(35): Unfold(kernel_size=(1, 1), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
|
||||
(36): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
|
||||
(37): L1NormLayer()
|
||||
(38): NNMF2d(96, 10, pfunctype=0, local_learning=False)
|
||||
(39): Conv2d(10, 10, kernel_size=(1, 1), stride=(1, 1))
|
||||
(40): Softmax(dim=1)
|
||||
(41): Flatten(start_dim=1, end_dim=-1)
|
||||
)
|
||||
|
||||
Information about used parameters:
|
||||
cnn_top: 14638
|
||||
nnmf: 173344
|
||||
batchnorm2d: 576
|
||||
total number of parameter: 188558
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue