nnmf_24a/MLP_equivalent/loss_function.py

64 lines
1.5 KiB
Python

import torch
# loss_mode == 0: "normal" SbS loss function mixture
# loss_mode == 1: cross_entropy
def loss_function(
h: torch.Tensor,
labels: torch.Tensor,
loss_mode: int = 0,
number_of_output_neurons: int = 10,
loss_coeffs_mse: float = 0.0,
loss_coeffs_kldiv: float = 0.0,
) -> torch.Tensor | None:
assert loss_mode >= 0
assert loss_mode <= 1
assert h.ndim == 2
if loss_mode == 0:
# Convert label into one hot
target_one_hot: torch.Tensor = torch.zeros(
(
labels.shape[0],
number_of_output_neurons,
),
device=h.device,
dtype=h.dtype,
)
target_one_hot.scatter_(
1,
labels.to(h.device).unsqueeze(1),
torch.ones(
(labels.shape[0], 1),
device=h.device,
dtype=h.dtype,
),
)
my_loss: torch.Tensor = ((h - target_one_hot) ** 2).sum(dim=0).mean(
dim=0
) * loss_coeffs_mse
my_loss = (
my_loss
+ (
(target_one_hot * torch.log((target_one_hot + 1e-20) / (h + 1e-20)))
.sum(dim=0)
.mean(dim=0)
)
* loss_coeffs_kldiv
)
my_loss = my_loss / (abs(loss_coeffs_kldiv) + abs(loss_coeffs_mse))
return my_loss
elif loss_mode == 1:
my_loss = torch.nn.functional.cross_entropy(h, labels.to(h.device))
return my_loss
else:
return None