Dateien nach „tools“ hochladen

This commit is contained in:
David Rotermund 2024-12-10 12:47:21 +01:00
commit 8b432157d8
5 changed files with 1390 additions and 0 deletions

237
tools/NNMF2d.py Normal file
View file

@ -0,0 +1,237 @@
import torch
class NNMF2d(torch.nn.Module):
in_channels: int
out_channels: int
weight: torch.Tensor
iterations: int
epsilon: float | None
init_min: float
init_max: float
local_learning: bool
local_learning_kl: bool
def __init__(
self,
in_channels: int,
out_channels: int,
device=None,
dtype=None,
iterations: int = 20,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
local_learning: bool = False,
local_learning_kl: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.init_min = init_min
self.init_max = init_max
self.in_channels = in_channels
self.out_channels = out_channels
self.iterations = iterations
self.local_learning = local_learning
self.local_learning_kl = local_learning_kl
self.weight = torch.nn.parameter.Parameter(
torch.empty((out_channels, in_channels), **factory_kwargs)
)
self.reset_parameters()
self.functional_nnmf2d = FunctionalNNMF2d.apply
self.epsilon = epsilon
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels}"
if self.epsilon is not None:
s += f", epsilon={self.epsilon}"
s += f", local_learning={self.local_learning}"
if self.local_learning:
s += f", local_learning_kl={self.local_learning_kl}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
positive_weights = torch.abs(self.weight)
positive_weights = positive_weights / (
positive_weights.sum(dim=1, keepdim=True) + 10e-20
)
h_dyn = self.functional_nnmf2d(
input,
positive_weights,
self.out_channels,
self.iterations,
self.epsilon,
self.local_learning,
self.local_learning_kl,
)
return h_dyn
class FunctionalNNMF2d(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
weight: torch.Tensor,
out_channels: int,
iterations: int,
epsilon: float | None,
local_learning: bool,
local_learning_kl: bool,
) -> torch.Tensor:
# Prepare h
h = torch.full(
(input.shape[0], out_channels, input.shape[-2], input.shape[-1]),
1.0 / float(out_channels),
device=input.device,
dtype=input.dtype,
)
h = h.movedim(1, -1)
input = input.movedim(1, -1)
for _ in range(0, iterations):
reconstruction = torch.nn.functional.linear(h, weight.T)
reconstruction += 1e-20
if epsilon is None:
h *= torch.nn.functional.linear((input / reconstruction), weight)
else:
h *= 1 + epsilon * torch.nn.functional.linear(
(input / reconstruction), weight
)
h /= h.sum(-1, keepdim=True) + 10e-20
h = h.movedim(-1, 1)
input = input.movedim(-1, 1)
# ###########################################################
# Save the necessary data for the backward pass
# ###########################################################
ctx.save_for_backward(input, weight, h)
ctx.local_learning = local_learning
ctx.local_learning_kl = local_learning_kl
assert torch.isfinite(h).all()
return h
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_output: torch.Tensor) -> tuple[ # type: ignore
torch.Tensor,
torch.Tensor | None,
None,
None,
None,
None,
None,
]:
# ##############################################
# Default values
# ##############################################
grad_weight: torch.Tensor | None = None
# ##############################################
# Get the variables back
# ##############################################
(input, weight, h) = ctx.saved_tensors
# The back prop gradient
h = h.movedim(1, -1)
grad_output = grad_output.movedim(1, -1)
input = input.movedim(1, -1)
big_r = torch.nn.functional.linear(h, weight.T)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r = input * big_r_div
grad_input: torch.Tensor = (
torch.nn.functional.linear(h * grad_output, weight.T) * big_r_div
)
del big_r_div
# The weight gradient
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(factor_x_div_r * grad_input)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_weight += torch.nn.functional.linear(
(h * grad_output)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
)
.T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(2 * (input - big_r))
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_input = grad_input.movedim(-1, 1)
assert torch.isfinite(grad_input).all()
assert torch.isfinite(grad_weight).all()
return (
grad_input,
grad_weight,
None,
None,
None,
None,
None,
)

234
tools/append_block.py Normal file
View file

@ -0,0 +1,234 @@
import torch
from tools.L1NormLayer import L1NormLayer
from tools.NNMF2d import NNMF2d
from tools.append_parameter import append_parameter
def append_block(
network: torch.nn.Sequential,
number_of_neurons_a: int,
number_of_neurons_b: int,
test_image: torch.Tensor,
parameter_neuron_a: list[torch.nn.parameter.Parameter],
parameter_neuron_b: list[torch.nn.parameter.Parameter],
parameter_batchnorm2d: list[torch.nn.parameter.Parameter],
device: torch.device,
dilation: tuple[int, int] | int = 1,
padding: tuple[int, int] | int = 0,
stride: tuple[int, int] | int = 1,
kernel_size: tuple[int, int] = (5, 5),
epsilon: float | None = None,
iterations: int = 20,
local_learning: bool = False,
local_learning_kl: bool = False,
momentum: float = 0.1,
track_running_stats: bool = False,
type_of_neuron_a: int = 0,
type_of_neuron_b: int = 0,
batch_norm_neuron_a: bool = True,
batch_norm_neuron_b: bool = True,
bias_norm_neuron_a: bool = False,
bias_norm_neuron_b: bool = True,
) -> torch.Tensor:
assert (type_of_neuron_a > 0) or (type_of_neuron_b > 0)
if number_of_neurons_b <= 0:
number_of_neurons_b = number_of_neurons_a
if number_of_neurons_a <= 0:
number_of_neurons_a = number_of_neurons_b
assert (type_of_neuron_a == 1) or (type_of_neuron_a == 2)
assert (type_of_neuron_b == 0) or (type_of_neuron_b == 1) or (type_of_neuron_b == 2)
kernel_size_internal: list[int] = [kernel_size[-2], kernel_size[-1]]
if kernel_size[0] < 1:
kernel_size_internal[0] = test_image.shape[-2]
if kernel_size[1] < 1:
kernel_size_internal[1] = test_image.shape[-1]
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
# I need the output size
mock_output = (
torch.nn.functional.conv2d(
torch.zeros(
1,
1,
test_image.shape[2],
test_image.shape[3],
),
torch.zeros((1, 1, kernel_size_internal[0], kernel_size_internal[1])),
stride=stride,
padding=padding,
dilation=dilation,
)
.squeeze(0)
.squeeze(0)
)
network.append(
torch.nn.Unfold(
kernel_size=(kernel_size_internal[-2], kernel_size_internal[-1]),
dilation=dilation,
padding=padding,
stride=stride,
)
)
test_image = network[-1](test_image)
network.append(
torch.nn.Fold(
output_size=mock_output.shape,
kernel_size=(1, 1),
dilation=1,
padding=0,
stride=1,
)
)
test_image = network[-1](test_image)
network.append(L1NormLayer())
test_image = network[-1](test_image)
if type_of_neuron_a == 1:
network.append(
NNMF2d(
in_channels=test_image.shape[1],
out_channels=number_of_neurons_a,
epsilon=epsilon,
iterations=iterations,
local_learning=local_learning,
local_learning_kl=local_learning_kl,
).to(device)
)
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_neuron_a)
elif type_of_neuron_a == 2:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_neurons_a,
kernel_size=(1, 1),
bias=bias_norm_neuron_a,
).to(device)
)
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_neuron_a)
else:
assert (type_of_neuron_a == 1) or (type_of_neuron_a == 2)
if batch_norm_neuron_a:
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
network.append(
torch.nn.BatchNorm2d(
num_features=test_image.shape[1],
momentum=momentum,
track_running_stats=track_running_stats,
device=device,
)
)
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_batchnorm2d)
if type_of_neuron_b == 0:
pass
elif type_of_neuron_b == 1:
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
network.append(L1NormLayer())
test_image = network[-1](test_image)
network.append(
NNMF2d(
in_channels=test_image.shape[1],
out_channels=number_of_neurons_b,
epsilon=epsilon,
iterations=iterations,
local_learning=local_learning,
local_learning_kl=local_learning_kl,
).to(device)
)
# Init the cnn top layers 1x1 conv2d layers
for name, param in network[-1].named_parameters():
with torch.no_grad():
print(param.shape)
if name == "weight":
if number_of_neurons_a >= param.shape[0]:
param.data[: param.shape[0], : param.shape[0]] = torch.eye(
param.shape[0], dtype=param.dtype, device=param.device
)
param.data[param.shape[0] :, :] = 0
param.data[:, param.shape[0] :] = 0
param.data += 1.0 / 10000.0
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_neuron_b)
elif type_of_neuron_b == 2:
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
network.append(L1NormLayer())
test_image = network[-1](test_image)
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_neurons_b,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=bias_norm_neuron_b,
device=device,
)
)
# Init the cnn top layers 1x1 conv2d layers
for name, param in network[-1].named_parameters():
with torch.no_grad():
if name == "bias":
param.data *= 0
param.data += (torch.rand_like(param) - 0.5) / 10000.0
if name == "weight":
if number_of_neurons_b >= param.shape[0]:
assert param.shape[-2] == 1
assert param.shape[-1] == 1
param.data[: param.shape[0], : param.shape[0], 0, 0] = (
torch.eye(
param.shape[0], dtype=param.dtype, device=param.device
)
)
param.data[param.shape[0] :, :, 0, 0] = 0
param.data[:, param.shape[0] :, 0, 0] = 0
param.data += (torch.rand_like(param) - 0.5) / 10000.0
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_neuron_b)
else:
assert (
(type_of_neuron_b == 0)
or (type_of_neuron_b == 1)
or (type_of_neuron_b == 2)
)
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
if (batch_norm_neuron_b) and (type_of_neuron_b > 0):
network.append(
torch.nn.BatchNorm2d(
num_features=test_image.shape[1],
device=device,
momentum=momentum,
track_running_stats=track_running_stats,
)
)
test_image = network[-1](test_image)
append_parameter(module=network[-1], parameter_list=parameter_batchnorm2d)
return test_image

163
tools/get_the_data.py Normal file
View file

@ -0,0 +1,163 @@
import torch
import torchvision # type: ignore
from tools.data_loader import data_loader
from torchvision.transforms import v2 # type: ignore
import numpy as np
def get_the_data(
dataset: str,
batch_size_train: int,
batch_size_test: int,
torch_device: torch.device,
input_dim_x: int,
input_dim_y: int,
flip_p: float = 0.5,
jitter_brightness: float = 0.5,
jitter_contrast: float = 0.1,
jitter_saturation: float = 0.1,
jitter_hue: float = 0.15,
da_auto_mode: bool = False,
disable_da: bool = False,
) -> tuple[
torch.utils.data.dataloader.DataLoader,
torch.utils.data.dataloader.DataLoader,
torchvision.transforms.Compose,
torchvision.transforms.Compose,
]:
if dataset == "MNIST":
tv_dataset_train = torchvision.datasets.MNIST(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.MNIST(
root="data", train=False, download=True
)
elif dataset == "FashionMNIST":
tv_dataset_train = torchvision.datasets.FashionMNIST(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.FashionMNIST(
root="data", train=False, download=True
)
elif dataset == "CIFAR10":
tv_dataset_train = torchvision.datasets.CIFAR10(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.CIFAR10(
root="data", train=False, download=True
)
else:
raise NotImplementedError("This dataset is not implemented.")
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
torch.random.seed(worker_seed)
g = torch.Generator()
g.manual_seed(0)
if dataset == "MNIST" or dataset == "FashionMNIST":
train_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_train,
pattern=tv_dataset_train.data,
labels=tv_dataset_train.targets,
shuffle=True,
worker_init_fn=seed_worker,
generator=g,
)
test_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_test,
pattern=tv_dataset_test.data,
labels=tv_dataset_test.targets,
shuffle=False,
worker_init_fn=seed_worker,
generator=g,
)
# Data augmentation filter
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
)
if disable_da:
train_processing_chain = torchvision.transforms.Compose(
transforms=[
torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))
],
)
else:
train_processing_chain = torchvision.transforms.Compose(
transforms=[
torchvision.transforms.RandomCrop((input_dim_x, input_dim_y))
],
)
else:
train_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_train,
pattern=torch.tensor(tv_dataset_train.data).movedim(-1, 1),
labels=torch.tensor(tv_dataset_train.targets),
shuffle=True,
worker_init_fn=seed_worker,
generator=g,
)
test_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_test,
pattern=torch.tensor(tv_dataset_test.data).movedim(-1, 1),
labels=torch.tensor(tv_dataset_test.targets),
shuffle=False,
worker_init_fn=seed_worker,
generator=g,
)
# Data augmentation filter
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
)
if disable_da:
train_processing_chain = torchvision.transforms.Compose(
transforms=[
torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))
],
)
else:
if da_auto_mode:
train_processing_chain = torchvision.transforms.Compose(
transforms=[
v2.AutoAugment(
policy=torchvision.transforms.AutoAugmentPolicy(
v2.AutoAugmentPolicy.CIFAR10
)
),
torchvision.transforms.CenterCrop((input_dim_x, input_dim_y)),
],
)
else:
train_processing_chain = torchvision.transforms.Compose(
transforms=[
torchvision.transforms.RandomCrop((input_dim_x, input_dim_y)),
torchvision.transforms.RandomHorizontalFlip(p=flip_p),
torchvision.transforms.ColorJitter(
brightness=jitter_brightness,
contrast=jitter_contrast,
saturation=jitter_saturation,
hue=jitter_hue,
),
],
)
return (
train_dataloader,
test_dataloader,
train_processing_chain,
test_processing_chain,
)

525
tools/make_network.py Normal file
View file

@ -0,0 +1,525 @@
import torch
from tools.append_block import append_block
from tools.L1NormLayer import L1NormLayer
from tools.NNMF2d import NNMF2d
from tools.append_parameter import append_parameter
import json
from jsmin import jsmin
def make_network(
input_dim_x: int,
input_dim_y: int,
input_number_of_channel: int,
device: torch.device,
config_network_filename: str = "config_network.json",
) -> tuple[
torch.nn.Sequential,
list[list[torch.nn.parameter.Parameter]],
list[str],
]:
with open(config_network_filename, "r") as file:
minified = jsmin(file.read())
config_network = json.loads(minified)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["number_of_neurons_b"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["kernel_size_conv"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["stride_conv"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["padding_conv"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["dilation_conv"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["kernel_size_pool"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["stride_pool"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["padding_pool"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["dilation_pool"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["type_of_pooling"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["local_learning_pooling"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["local_learning_use_kl_pooling"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["type_of_neuron_a"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["type_of_neuron_b"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["batch_norm_neuron_a"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["batch_norm_neuron_b"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["bias_norm_neuron_a"])
)
assert len(list(config_network["number_of_neurons_a"])) == len(
list(config_network["bias_norm_neuron_b"])
)
parameter_neuron_b: list[torch.nn.parameter.Parameter] = []
parameter_neuron_a: list[torch.nn.parameter.Parameter] = []
parameter_batchnorm2d: list[torch.nn.parameter.Parameter] = []
parameter_neuron_pool: list[torch.nn.parameter.Parameter] = []
test_image = torch.ones(
(1, input_number_of_channel, input_dim_x, input_dim_y), device=device
)
network = torch.nn.Sequential()
network = network.to(device)
epsilon: float | None = None
if isinstance(config_network["epsilon"], float):
epsilon = float(config_network["epsilon"])
for block_id in range(0, len(list(config_network["number_of_neurons_a"]))):
test_image = append_block(
network=network,
number_of_neurons_a=int(
list(config_network["number_of_neurons_a"])[block_id]
),
number_of_neurons_b=int(
list(config_network["number_of_neurons_b"])[block_id]
),
test_image=test_image,
dilation=list(list(config_network["dilation_conv"])[block_id]),
padding=list(list(config_network["padding_conv"])[block_id]),
stride=list(list(config_network["stride_conv"])[block_id]),
kernel_size=list(list(config_network["kernel_size_conv"])[block_id]),
epsilon=epsilon,
iterations=int(config_network["iterations"]),
device=device,
parameter_neuron_a=parameter_neuron_a,
parameter_neuron_b=parameter_neuron_b,
parameter_batchnorm2d=parameter_batchnorm2d,
type_of_neuron_a=int(list(config_network["type_of_neuron_a"])[block_id]),
type_of_neuron_b=int(list(config_network["type_of_neuron_b"])[block_id]),
batch_norm_neuron_a=bool(
list(config_network["batch_norm_neuron_a"])[block_id]
),
batch_norm_neuron_b=bool(
list(config_network["batch_norm_neuron_b"])[block_id]
),
bias_norm_neuron_a=bool(
list(config_network["bias_norm_neuron_a"])[block_id]
),
bias_norm_neuron_b=bool(
list(config_network["bias_norm_neuron_b"])[block_id]
),
)
if (int(list(list(config_network["kernel_size_pool"])[block_id])[0]) > 0) and (
(int(list(list(config_network["kernel_size_pool"])[block_id])[1]) > 0)
):
if int(list(config_network["type_of_pooling"])[block_id]) == 0:
pass
elif int(list(config_network["type_of_pooling"])[block_id]) == 1:
network.append(
torch.nn.AvgPool2d(
kernel_size=(
(
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[0]
)
),
(
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[1]
)
),
),
stride=(
(
int(
list(list(config_network["stride_pool"])[block_id])[
0
]
)
),
(
int(
list(list(config_network["stride_pool"])[block_id])[
1
]
)
),
),
padding=(
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[1]
)
),
),
)
)
test_image = network[-1](test_image)
elif int(list(config_network["type_of_pooling"])[block_id]) == 2:
network.append(
torch.nn.MaxPool2d(
kernel_size=(
(
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[0]
)
),
(
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[1]
)
),
),
stride=(
(
int(
list(list(config_network["stride_pool"])[block_id])[
0
]
)
),
(
int(
list(list(config_network["stride_pool"])[block_id])[
1
]
)
),
),
padding=(
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[1]
)
),
),
)
)
test_image = network[-1](test_image)
elif (int(list(config_network["type_of_pooling"])[block_id]) == 3) or (
int(list(config_network["type_of_pooling"])[block_id]) == 4
):
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
mock_output = (
torch.nn.functional.conv2d(
torch.zeros(
1,
1,
test_image.shape[2],
test_image.shape[3],
),
torch.zeros(
(
1,
1,
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[0]
),
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[1]
),
)
),
stride=(
(
int(
list(list(config_network["stride_pool"])[block_id])[
0
]
)
),
(
int(
list(list(config_network["stride_pool"])[block_id])[
1
]
)
),
),
padding=(
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[1]
)
),
),
dilation=(
(
int(
list(
list(config_network["dilation_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["dilation_pool"])[block_id]
)[1]
)
),
),
)
.squeeze(0)
.squeeze(0)
)
network.append(
torch.nn.Unfold(
kernel_size=(
int(
list(
list(config_network["kernel_size_pool"])[block_id]
)[0]
),
int(
list(
list(config_network["kernel_size_pool"])[block_id]
)[1]
),
),
stride=(
(
int(
list(list(config_network["stride_pool"])[block_id])[
0
]
)
),
(
int(
list(list(config_network["stride_pool"])[block_id])[
1
]
)
),
),
padding=(
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["padding_pool"])[block_id]
)[1]
)
),
),
dilation=(
(
int(
list(
list(config_network["dilation_pool"])[block_id]
)[0]
)
),
(
int(
list(
list(config_network["dilation_pool"])[block_id]
)[1]
)
),
),
)
)
test_image = network[-1](test_image)
network.append(
torch.nn.Fold(
output_size=mock_output.shape,
kernel_size=(1, 1),
dilation=1,
padding=0,
stride=1,
)
)
test_image = network[-1](test_image)
network.append(L1NormLayer())
test_image = network[-1](test_image)
if int(list(config_network["type_of_pooling"])[block_id]) == 3:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=test_image.shape[1]
// (
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[0]
)
* int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[1]
)
),
kernel_size=(1, 1),
bias=False,
).to(device)
)
else:
network.append(
NNMF2d(
in_channels=test_image.shape[1],
out_channels=test_image.shape[1]
// (
int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[0]
)
* int(
list(
list(config_network["kernel_size_pool"])[
block_id
]
)[1]
)
),
epsilon=epsilon,
local_learning=bool(
list(config_network["local_learning_pooling"])[block_id]
),
local_learning_kl=bool(
list(config_network["local_learning_use_kl_pooling"])[
block_id
]
),
).to(device)
)
test_image = network[-1](test_image)
append_parameter(
module=network[-1], parameter_list=parameter_neuron_pool
)
network.append(
torch.nn.BatchNorm2d(
num_features=test_image.shape[1],
device=device,
momentum=0.1,
track_running_stats=False,
)
)
test_image = network[-1](test_image)
append_parameter(
module=network[-1], parameter_list=parameter_batchnorm2d
)
else:
assert int(list(config_network["type_of_pooling"])[block_id]) > 4
network.append(torch.nn.Softmax(dim=1))
test_image = network[-1](test_image)
network.append(torch.nn.Flatten())
test_image = network[-1](test_image)
parameters: list[list[torch.nn.parameter.Parameter]] = [
parameter_neuron_a,
parameter_neuron_b,
parameter_batchnorm2d,
parameter_neuron_pool,
]
name_list: list[str] = ["neuron a", "neuron b", "batchnorm2d", "neuron pool"]
return (
network,
parameters,
name_list,
)

231
tools/run_network_train.py Normal file
View file

@ -0,0 +1,231 @@
import time
import numpy as np
import torch
import json
from jsmin import jsmin
import os
from torch.utils.tensorboard import SummaryWriter
from tools.make_network import make_network
from tools.get_the_data import get_the_data
from tools.loss_function import loss_function
from tools.make_optimize import make_optimize
def main(
rand_seed: int = 21,
only_print_network: bool = False,
config_network_filename: str = "config_network.json",
config_data_filename: str = "config_data.json",
config_lr_parameter_filename: str = "config_lr_parameter.json",
) -> None:
os.makedirs("Models", exist_ok=True)
device: torch.device = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
torch.set_default_dtype(torch.float32)
# Some parameters
with open(config_data_filename, "r") as file:
minified = jsmin(file.read())
config_data = json.loads(minified)
with open(config_lr_parameter_filename, "r") as file:
minified = jsmin(file.read())
config_lr_parameter = json.loads(minified)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
np.random.seed(rand_seed)
if (
str(config_data["dataset"]) == "MNIST"
or str(config_data["dataset"]) == "FashionMNIST"
):
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
else:
input_number_of_channel = 3
input_dim_x = 28
input_dim_y = 28
train_dataloader, test_dataloader, train_processing_chain, test_processing_chain = (
get_the_data(
str(config_data["dataset"]),
int(config_data["batch_size_train"]),
int(config_data["batch_size_test"]),
device,
input_dim_x,
input_dim_y,
flip_p=float(config_data["flip_p"]),
jitter_brightness=float(config_data["jitter_brightness"]),
jitter_contrast=float(config_data["jitter_contrast"]),
jitter_saturation=float(config_data["jitter_saturation"]),
jitter_hue=float(config_data["jitter_hue"]),
da_auto_mode=bool(config_data["da_auto_mode"]),
)
)
(
network,
parameters,
name_list,
) = make_network(
input_dim_x=input_dim_x,
input_dim_y=input_dim_y,
input_number_of_channel=input_number_of_channel,
device=device,
config_network_filename=config_network_filename,
)
print(network)
print()
print("Information about used parameters:")
number_of_parameter: int = 0
for i, parameter_list in enumerate(parameters):
count_parameter: int = 0
for parameter_element in parameter_list:
count_parameter += parameter_element.numel()
print(f"{name_list[i]}: {count_parameter}")
number_of_parameter += count_parameter
print(f"total number of parameter: {number_of_parameter}")
if only_print_network:
exit()
(
optimizers,
lr_schedulers,
) = make_optimize(
parameters=parameters,
lr_initial=[
float(config_lr_parameter["lr_initial_neuron_a"]),
float(config_lr_parameter["lr_initial_neuron_b"]),
float(config_lr_parameter["lr_initial_norm"]),
float(config_lr_parameter["lr_initial_batchnorm2d"]),
],
)
my_string: str = f"seed_{rand_seed}"
default_path: str = f"{my_string}"
log_dir: str = f"log_{default_path}"
tb = SummaryWriter(log_dir=log_dir)
for epoch_id in range(0, int(config_lr_parameter["number_of_epoch"])):
print()
print(f"Epoch: {epoch_id}")
t_start: float = time.perf_counter()
train_loss: float = 0.0
train_correct: int = 0
train_number: int = 0
test_correct: int = 0
test_number: int = 0
# Switch the network into training mode
network.train()
# This runs in total for one epoch split up into mini-batches
for image, target in train_dataloader:
# Clean the gradient
for i in range(0, len(optimizers)):
if optimizers[i] is not None:
optimizers[i].zero_grad() # type: ignore
output = network(train_processing_chain(image))
loss = loss_function(
h=output,
labels=target,
number_of_output_neurons=output.shape[1],
loss_mode=int(config_lr_parameter["loss_mode"]),
loss_coeffs_mse=float(config_lr_parameter["loss_coeffs_mse"]),
loss_coeffs_kldiv=float(config_lr_parameter["loss_coeffs_kldiv"]),
)
assert loss is not None
train_loss += loss.item()
train_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
train_number += target.shape[0]
# Calculate backprop
loss.backward()
# Update the parameter
# Clean the gradient
for i in range(0, len(optimizers)):
if optimizers[i] is not None:
optimizers[i].step() # type: ignore
perfomance_train_correct: float = 100.0 * train_correct / train_number
# Update the learning rate
for i in range(0, len(lr_schedulers)):
if lr_schedulers[i] is not None:
lr_schedulers[i].step(train_loss) # type: ignore
my_string = "Actual lr: "
for i in range(0, len(lr_schedulers)):
if lr_schedulers[i] is not None:
my_string += f" {lr_schedulers[i].get_last_lr()[0]:.4e} " # type: ignore
else:
my_string += " --- "
print(my_string)
t_training: float = time.perf_counter()
# Switch the network into evalution mode
network.eval()
with torch.no_grad():
for image, target in test_dataloader:
output = network(test_processing_chain(image))
test_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
test_number += target.shape[0]
t_testing = time.perf_counter()
perfomance_test_correct: float = 100.0 * test_correct / test_number
tb.add_scalar("Train Loss", train_loss / float(train_number), epoch_id)
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
print(
f"Training: Loss={train_loss / float(train_number):.5f} Correct={perfomance_train_correct:.2f}%"
)
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
print(
f"Time: Training={(t_training - t_start):.1f}sec, Testing={(t_testing - t_training):.1f}sec"
)
tb.flush()
lr_check: list[float] = []
for i in range(0, len(lr_schedulers)):
if lr_schedulers[i] is not None:
lr_check.append(lr_schedulers[i].get_last_lr()[0]) # type: ignore
lr_check_max = float(torch.tensor(lr_check).max())
if lr_check_max < float(config_lr_parameter["lr_limit"]):
torch.save(network, f"Models/Model_{default_path}.pt")
tb.close()
print("Done (lr_limit)")
return
torch.save(network, f"Models/Model_{default_path}.pt")
print()
tb.close()
print("Done (loop end)")
return