import time import numpy as np import torch import json from jsmin import jsmin import os from torch.utils.tensorboard import SummaryWriter from tools.make_network import make_network from tools.get_the_data import get_the_data from tools.loss_function import loss_function from tools.make_optimize import make_optimize def main( rand_seed: int = 21, only_print_network: bool = False, config_network_filename: str = "config_network.json", config_data_filename: str = "config_data.json", config_lr_parameter_filename: str = "config_lr_parameter.json", ) -> None: os.makedirs("Models", exist_ok=True) device: torch.device = ( torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") ) torch.set_default_dtype(torch.float32) # Some parameters with open(config_data_filename, "r") as file: minified = jsmin(file.read()) config_data = json.loads(minified) with open(config_lr_parameter_filename, "r") as file: minified = jsmin(file.read()) config_lr_parameter = json.loads(minified) torch.manual_seed(rand_seed) torch.cuda.manual_seed(rand_seed) np.random.seed(rand_seed) if ( str(config_data["dataset"]) == "MNIST" or str(config_data["dataset"]) == "FashionMNIST" ): input_number_of_channel: int = 1 input_dim_x: int = 24 input_dim_y: int = 24 else: input_number_of_channel = 3 input_dim_x = 28 input_dim_y = 28 train_dataloader, test_dataloader, train_processing_chain, test_processing_chain = ( get_the_data( str(config_data["dataset"]), int(config_data["batch_size_train"]), int(config_data["batch_size_test"]), device, input_dim_x, input_dim_y, flip_p=float(config_data["flip_p"]), jitter_brightness=float(config_data["jitter_brightness"]), jitter_contrast=float(config_data["jitter_contrast"]), jitter_saturation=float(config_data["jitter_saturation"]), jitter_hue=float(config_data["jitter_hue"]), da_auto_mode=bool(config_data["da_auto_mode"]), ) ) ( network, parameters, name_list, ) = make_network( input_dim_x=input_dim_x, input_dim_y=input_dim_y, input_number_of_channel=input_number_of_channel, device=device, config_network_filename=config_network_filename, ) print(network) print() print("Information about used parameters:") number_of_parameter: int = 0 for i, parameter_list in enumerate(parameters): count_parameter: int = 0 for parameter_element in parameter_list: count_parameter += parameter_element.numel() print(f"{name_list[i]}: {count_parameter}") number_of_parameter += count_parameter print(f"total number of parameter: {number_of_parameter}") if only_print_network: exit() ( optimizers, lr_schedulers, ) = make_optimize( parameters=parameters, lr_initial=[ float(config_lr_parameter["lr_initial_neuron_a"]), float(config_lr_parameter["lr_initial_neuron_b"]), float(config_lr_parameter["lr_initial_norm"]), float(config_lr_parameter["lr_initial_batchnorm2d"]), ], ) my_string: str = f"seed_{rand_seed}" default_path: str = f"{my_string}" log_dir: str = f"log_{default_path}" tb = SummaryWriter(log_dir=log_dir) for epoch_id in range(0, int(config_lr_parameter["number_of_epoch"])): print() print(f"Epoch: {epoch_id}") t_start: float = time.perf_counter() train_loss: float = 0.0 train_correct: int = 0 train_number: int = 0 test_correct: int = 0 test_number: int = 0 # Switch the network into training mode network.train() # This runs in total for one epoch split up into mini-batches for image, target in train_dataloader: # Clean the gradient for i in range(0, len(optimizers)): if optimizers[i] is not None: optimizers[i].zero_grad() # type: ignore output = network(train_processing_chain(image)) loss = loss_function( h=output, labels=target, number_of_output_neurons=output.shape[1], loss_mode=int(config_lr_parameter["loss_mode"]), loss_coeffs_mse=float(config_lr_parameter["loss_coeffs_mse"]), loss_coeffs_kldiv=float(config_lr_parameter["loss_coeffs_kldiv"]), ) assert loss is not None train_loss += loss.item() train_correct += (output.argmax(dim=1) == target).sum().cpu().numpy() train_number += target.shape[0] # Calculate backprop loss.backward() # Update the parameter # Clean the gradient for i in range(0, len(optimizers)): if optimizers[i] is not None: optimizers[i].step() # type: ignore perfomance_train_correct: float = 100.0 * train_correct / train_number # Update the learning rate for i in range(0, len(lr_schedulers)): if lr_schedulers[i] is not None: lr_schedulers[i].step(train_loss) # type: ignore my_string = "Actual lr: " for i in range(0, len(lr_schedulers)): if lr_schedulers[i] is not None: my_string += f" {lr_schedulers[i].get_last_lr()[0]:.4e} " # type: ignore else: my_string += " --- " print(my_string) t_training: float = time.perf_counter() # Switch the network into evalution mode network.eval() with torch.no_grad(): for image, target in test_dataloader: output = network(test_processing_chain(image)) test_correct += (output.argmax(dim=1) == target).sum().cpu().numpy() test_number += target.shape[0] t_testing = time.perf_counter() perfomance_test_correct: float = 100.0 * test_correct / test_number tb.add_scalar("Train Loss", train_loss / float(train_number), epoch_id) tb.add_scalar("Train Number Correct", train_correct, epoch_id) tb.add_scalar("Test Number Correct", test_correct, epoch_id) print( f"Training: Loss={train_loss / float(train_number):.5f} Correct={perfomance_train_correct:.2f}%" ) print(f"Testing: Correct={perfomance_test_correct:.2f}%") print( f"Time: Training={(t_training - t_start):.1f}sec, Testing={(t_testing - t_training):.1f}sec" ) tb.flush() lr_check: list[float] = [] for i in range(0, len(lr_schedulers)): if lr_schedulers[i] is not None: lr_check.append(lr_schedulers[i].get_last_lr()[0]) # type: ignore lr_check_max = float(torch.tensor(lr_check).max()) if lr_check_max < float(config_lr_parameter["lr_limit"]): torch.save(network, f"Models/Model_{default_path}.pt") tb.close() print("Done (lr_limit)") return torch.save(network, f"Models/Model_{default_path}.pt") print() tb.close() print("Done (loop end)") return