332 lines
14 KiB
Python
332 lines
14 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
Dataloaders
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader, distributed
|
||
|
|
||
|
from ..augmentations import augment_hsv, copy_paste, letterbox
|
||
|
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker
|
||
|
from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
|
||
|
from ..torch_utils import torch_distributed_zero_first
|
||
|
from .augmentations import mixup, random_perspective
|
||
|
|
||
|
RANK = int(os.getenv('RANK', -1))
|
||
|
|
||
|
|
||
|
def create_dataloader(path,
|
||
|
imgsz,
|
||
|
batch_size,
|
||
|
stride,
|
||
|
single_cls=False,
|
||
|
hyp=None,
|
||
|
augment=False,
|
||
|
cache=False,
|
||
|
pad=0.0,
|
||
|
rect=False,
|
||
|
rank=-1,
|
||
|
workers=8,
|
||
|
image_weights=False,
|
||
|
quad=False,
|
||
|
prefix='',
|
||
|
shuffle=False,
|
||
|
mask_downsample_ratio=1,
|
||
|
overlap_mask=False):
|
||
|
if rect and shuffle:
|
||
|
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
||
|
shuffle = False
|
||
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||
|
dataset = LoadImagesAndLabelsAndMasks(
|
||
|
path,
|
||
|
imgsz,
|
||
|
batch_size,
|
||
|
augment=augment, # augmentation
|
||
|
hyp=hyp, # hyperparameters
|
||
|
rect=rect, # rectangular batches
|
||
|
cache_images=cache,
|
||
|
single_cls=single_cls,
|
||
|
stride=int(stride),
|
||
|
pad=pad,
|
||
|
image_weights=image_weights,
|
||
|
prefix=prefix,
|
||
|
downsample_ratio=mask_downsample_ratio,
|
||
|
overlap=overlap_mask)
|
||
|
|
||
|
batch_size = min(batch_size, len(dataset))
|
||
|
nd = torch.cuda.device_count() # number of CUDA devices
|
||
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||
|
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
||
|
generator = torch.Generator()
|
||
|
generator.manual_seed(6148914691236517205 + RANK)
|
||
|
return loader(
|
||
|
dataset,
|
||
|
batch_size=batch_size,
|
||
|
shuffle=shuffle and sampler is None,
|
||
|
num_workers=nw,
|
||
|
sampler=sampler,
|
||
|
pin_memory=True,
|
||
|
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
|
||
|
worker_init_fn=seed_worker,
|
||
|
generator=generator,
|
||
|
), dataset
|
||
|
|
||
|
|
||
|
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
path,
|
||
|
img_size=640,
|
||
|
batch_size=16,
|
||
|
augment=False,
|
||
|
hyp=None,
|
||
|
rect=False,
|
||
|
image_weights=False,
|
||
|
cache_images=False,
|
||
|
single_cls=False,
|
||
|
stride=32,
|
||
|
pad=0,
|
||
|
min_items=0,
|
||
|
prefix="",
|
||
|
downsample_ratio=1,
|
||
|
overlap=False,
|
||
|
):
|
||
|
super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
|
||
|
stride, pad, min_items, prefix)
|
||
|
self.downsample_ratio = downsample_ratio
|
||
|
self.overlap = overlap
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
index = self.indices[index] # linear, shuffled, or image_weights
|
||
|
|
||
|
hyp = self.hyp
|
||
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
||
|
masks = []
|
||
|
if mosaic:
|
||
|
# Load mosaic
|
||
|
img, labels, segments = self.load_mosaic(index)
|
||
|
shapes = None
|
||
|
|
||
|
# MixUp augmentation
|
||
|
if random.random() < hyp["mixup"]:
|
||
|
img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
|
||
|
|
||
|
else:
|
||
|
# Load image
|
||
|
img, (h0, w0), (h, w) = self.load_image(index)
|
||
|
|
||
|
# Letterbox
|
||
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||
|
|
||
|
labels = self.labels[index].copy()
|
||
|
# [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
|
||
|
segments = self.segments[index].copy()
|
||
|
if len(segments):
|
||
|
for i_s in range(len(segments)):
|
||
|
segments[i_s] = xyn2xy(
|
||
|
segments[i_s],
|
||
|
ratio[0] * w,
|
||
|
ratio[1] * h,
|
||
|
padw=pad[0],
|
||
|
padh=pad[1],
|
||
|
)
|
||
|
if labels.size: # normalized xywh to pixel xyxy format
|
||
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
||
|
|
||
|
if self.augment:
|
||
|
img, labels, segments = random_perspective(img,
|
||
|
labels,
|
||
|
segments=segments,
|
||
|
degrees=hyp["degrees"],
|
||
|
translate=hyp["translate"],
|
||
|
scale=hyp["scale"],
|
||
|
shear=hyp["shear"],
|
||
|
perspective=hyp["perspective"])
|
||
|
|
||
|
nl = len(labels) # number of labels
|
||
|
if nl:
|
||
|
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
|
||
|
if self.overlap:
|
||
|
masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
|
||
|
segments,
|
||
|
downsample_ratio=self.downsample_ratio)
|
||
|
masks = masks[None] # (640, 640) -> (1, 640, 640)
|
||
|
labels = labels[sorted_idx]
|
||
|
else:
|
||
|
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
|
||
|
|
||
|
masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
|
||
|
self.downsample_ratio, img.shape[1] //
|
||
|
self.downsample_ratio))
|
||
|
# TODO: albumentations support
|
||
|
if self.augment:
|
||
|
# Albumentations
|
||
|
# there are some augmentation that won't change boxes and masks,
|
||
|
# so just be it for now.
|
||
|
img, labels = self.albumentations(img, labels)
|
||
|
nl = len(labels) # update after albumentations
|
||
|
|
||
|
# HSV color-space
|
||
|
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
|
||
|
|
||
|
# Flip up-down
|
||
|
if random.random() < hyp["flipud"]:
|
||
|
img = np.flipud(img)
|
||
|
if nl:
|
||
|
labels[:, 2] = 1 - labels[:, 2]
|
||
|
masks = torch.flip(masks, dims=[1])
|
||
|
|
||
|
# Flip left-right
|
||
|
if random.random() < hyp["fliplr"]:
|
||
|
img = np.fliplr(img)
|
||
|
if nl:
|
||
|
labels[:, 1] = 1 - labels[:, 1]
|
||
|
masks = torch.flip(masks, dims=[2])
|
||
|
|
||
|
# Cutouts # labels = cutout(img, labels, p=0.5)
|
||
|
|
||
|
labels_out = torch.zeros((nl, 6))
|
||
|
if nl:
|
||
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
||
|
|
||
|
# Convert
|
||
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||
|
img = np.ascontiguousarray(img)
|
||
|
|
||
|
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
|
||
|
|
||
|
def load_mosaic(self, index):
|
||
|
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
||
|
labels4, segments4 = [], []
|
||
|
s = self.img_size
|
||
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
||
|
|
||
|
# 3 additional image indices
|
||
|
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
||
|
for i, index in enumerate(indices):
|
||
|
# Load image
|
||
|
img, _, (h, w) = self.load_image(index)
|
||
|
|
||
|
# place img in img4
|
||
|
if i == 0: # top left
|
||
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||
|
elif i == 1: # top right
|
||
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||
|
elif i == 2: # bottom left
|
||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
||
|
elif i == 3: # bottom right
|
||
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||
|
|
||
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||
|
padw = x1a - x1b
|
||
|
padh = y1a - y1b
|
||
|
|
||
|
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
||
|
|
||
|
if labels.size:
|
||
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
||
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
||
|
labels4.append(labels)
|
||
|
segments4.extend(segments)
|
||
|
|
||
|
# Concat/clip labels
|
||
|
labels4 = np.concatenate(labels4, 0)
|
||
|
for x in (labels4[:, 1:], *segments4):
|
||
|
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
||
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
||
|
|
||
|
# Augment
|
||
|
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
|
||
|
img4, labels4, segments4 = random_perspective(img4,
|
||
|
labels4,
|
||
|
segments4,
|
||
|
degrees=self.hyp["degrees"],
|
||
|
translate=self.hyp["translate"],
|
||
|
scale=self.hyp["scale"],
|
||
|
shear=self.hyp["shear"],
|
||
|
perspective=self.hyp["perspective"],
|
||
|
border=self.mosaic_border) # border to remove
|
||
|
return img4, labels4, segments4
|
||
|
|
||
|
@staticmethod
|
||
|
def collate_fn(batch):
|
||
|
img, label, path, shapes, masks = zip(*batch) # transposed
|
||
|
batched_masks = torch.cat(masks, 0)
|
||
|
for i, l in enumerate(label):
|
||
|
l[:, 0] = i # add target image index for build_targets()
|
||
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
|
||
|
|
||
|
|
||
|
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
|
||
|
"""
|
||
|
Args:
|
||
|
img_size (tuple): The image size.
|
||
|
polygons (np.ndarray): [N, M], N is the number of polygons,
|
||
|
M is the number of points(Be divided by 2).
|
||
|
"""
|
||
|
mask = np.zeros(img_size, dtype=np.uint8)
|
||
|
polygons = np.asarray(polygons)
|
||
|
polygons = polygons.astype(np.int32)
|
||
|
shape = polygons.shape
|
||
|
polygons = polygons.reshape(shape[0], -1, 2)
|
||
|
cv2.fillPoly(mask, polygons, color=color)
|
||
|
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
|
||
|
# NOTE: fillPoly firstly then resize is trying the keep the same way
|
||
|
# of loss calculation when mask-ratio=1.
|
||
|
mask = cv2.resize(mask, (nw, nh))
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def polygons2masks(img_size, polygons, color, downsample_ratio=1):
|
||
|
"""
|
||
|
Args:
|
||
|
img_size (tuple): The image size.
|
||
|
polygons (list[np.ndarray]): each polygon is [N, M],
|
||
|
N is the number of polygons,
|
||
|
M is the number of points(Be divided by 2).
|
||
|
"""
|
||
|
masks = []
|
||
|
for si in range(len(polygons)):
|
||
|
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
|
||
|
masks.append(mask)
|
||
|
return np.array(masks)
|
||
|
|
||
|
|
||
|
def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
|
||
|
"""Return a (640, 640) overlap mask."""
|
||
|
masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
|
||
|
dtype=np.int32 if len(segments) > 255 else np.uint8)
|
||
|
areas = []
|
||
|
ms = []
|
||
|
for si in range(len(segments)):
|
||
|
mask = polygon2mask(
|
||
|
img_size,
|
||
|
[segments[si].reshape(-1)],
|
||
|
downsample_ratio=downsample_ratio,
|
||
|
color=1,
|
||
|
)
|
||
|
ms.append(mask)
|
||
|
areas.append(mask.sum())
|
||
|
areas = np.asarray(areas)
|
||
|
index = np.argsort(-areas)
|
||
|
ms = np.array(ms)[index]
|
||
|
for i in range(len(segments)):
|
||
|
mask = ms[i] * (i + 1)
|
||
|
masks = masks + mask
|
||
|
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
||
|
return masks, index
|