161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
def crop_mask(masks, boxes):
|
||
|
"""
|
||
|
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
|
||
|
Vectorized by Chong (thanks Chong).
|
||
|
|
||
|
Args:
|
||
|
- masks should be a size [h, w, n] tensor of masks
|
||
|
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
||
|
"""
|
||
|
|
||
|
n, h, w = masks.shape
|
||
|
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
||
|
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
||
|
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
||
|
|
||
|
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
||
|
|
||
|
|
||
|
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
||
|
"""
|
||
|
Crop after upsample.
|
||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||
|
bboxes: [n, 4], n is number of masks after nms
|
||
|
shape:input_image_size, (h, w)
|
||
|
|
||
|
return: h, w, n
|
||
|
"""
|
||
|
|
||
|
c, mh, mw = protos.shape # CHW
|
||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||
|
masks = crop_mask(masks, bboxes) # CHW
|
||
|
return masks.gt_(0.5)
|
||
|
|
||
|
|
||
|
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
||
|
"""
|
||
|
Crop before upsample.
|
||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||
|
bboxes: [n, 4], n is number of masks after nms
|
||
|
shape:input_image_size, (h, w)
|
||
|
|
||
|
return: h, w, n
|
||
|
"""
|
||
|
|
||
|
c, mh, mw = protos.shape # CHW
|
||
|
ih, iw = shape
|
||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
||
|
|
||
|
downsampled_bboxes = bboxes.clone()
|
||
|
downsampled_bboxes[:, 0] *= mw / iw
|
||
|
downsampled_bboxes[:, 2] *= mw / iw
|
||
|
downsampled_bboxes[:, 3] *= mh / ih
|
||
|
downsampled_bboxes[:, 1] *= mh / ih
|
||
|
|
||
|
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
||
|
if upsample:
|
||
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||
|
return masks.gt_(0.5)
|
||
|
|
||
|
|
||
|
def process_mask_native(protos, masks_in, bboxes, dst_shape):
|
||
|
"""
|
||
|
Crop after upsample.
|
||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||
|
bboxes: [n, 4], n is number of masks after nms
|
||
|
shape:input_image_size, (h, w)
|
||
|
|
||
|
return: h, w, n
|
||
|
"""
|
||
|
c, mh, mw = protos.shape # CHW
|
||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||
|
gain = min(mh / dst_shape[0], mw / dst_shape[1]) # gain = old / new
|
||
|
pad = (mw - dst_shape[1] * gain) / 2, (mh - dst_shape[0] * gain) / 2 # wh padding
|
||
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
||
|
bottom, right = int(mh - pad[1]), int(mw - pad[0])
|
||
|
masks = masks[:, top:bottom, left:right]
|
||
|
|
||
|
masks = F.interpolate(masks[None], dst_shape, mode='bilinear', align_corners=False)[0] # CHW
|
||
|
masks = crop_mask(masks, bboxes) # CHW
|
||
|
return masks.gt_(0.5)
|
||
|
|
||
|
|
||
|
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
|
||
|
"""
|
||
|
img1_shape: model input shape, [h, w]
|
||
|
img0_shape: origin pic shape, [h, w, 3]
|
||
|
masks: [h, w, num]
|
||
|
"""
|
||
|
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
||
|
if ratio_pad is None: # calculate from im0_shape
|
||
|
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
||
|
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
||
|
else:
|
||
|
pad = ratio_pad[1]
|
||
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
||
|
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
||
|
|
||
|
if len(masks.shape) < 2:
|
||
|
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
||
|
masks = masks[top:bottom, left:right]
|
||
|
# masks = masks.permute(2, 0, 1).contiguous()
|
||
|
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
|
||
|
# masks = masks.permute(1, 2, 0).contiguous()
|
||
|
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
||
|
|
||
|
if len(masks.shape) == 2:
|
||
|
masks = masks[:, :, None]
|
||
|
return masks
|
||
|
|
||
|
|
||
|
def mask_iou(mask1, mask2, eps=1e-7):
|
||
|
"""
|
||
|
mask1: [N, n] m1 means number of predicted objects
|
||
|
mask2: [M, n] m2 means number of gt objects
|
||
|
Note: n means image_w x image_h
|
||
|
|
||
|
return: masks iou, [N, M]
|
||
|
"""
|
||
|
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
||
|
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
||
|
return intersection / (union + eps)
|
||
|
|
||
|
|
||
|
def masks_iou(mask1, mask2, eps=1e-7):
|
||
|
"""
|
||
|
mask1: [N, n] m1 means number of predicted objects
|
||
|
mask2: [N, n] m2 means number of gt objects
|
||
|
Note: n means image_w x image_h
|
||
|
|
||
|
return: masks iou, (N, )
|
||
|
"""
|
||
|
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
||
|
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
||
|
return intersection / (union + eps)
|
||
|
|
||
|
|
||
|
def masks2segments(masks, strategy='largest'):
|
||
|
# Convert masks(n,160,160) into segments(n,xy)
|
||
|
segments = []
|
||
|
for x in masks.int().cpu().numpy().astype('uint8'):
|
||
|
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
||
|
if c:
|
||
|
if strategy == 'concat': # concatenate all segments
|
||
|
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
||
|
elif strategy == 'largest': # select largest segment
|
||
|
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
||
|
else:
|
||
|
c = np.zeros((0, 2)) # no segments found
|
||
|
segments.append(c.astype('float32'))
|
||
|
return segments
|