percept_simulator_2023/processing_chain/OnlineEncoding.py

712 lines
26 KiB
Python
Raw Normal View History

2023-07-31 15:23:13 +02:00
# %%
#
# test_OnlineEncoding.py
# ========================================================
# encode visual scenes into sparse representations using
# different kinds of dictionaries
#
# -> derived from test_PsychophysicsEncoding.py
#
# Version 1.0, 29.04.2023:
#
# Version 1.1, 21.06.2023:
# define proper class
#
# Import Python modules
# ========================================================
# import csv
# import time
import os
import glob
import matplotlib.pyplot as plt
import torch
import torchvision as tv
from PIL import Image
import cv2
import numpy as np
# Import our modules
# ========================================================
from processing_chain.ContourExtract import ContourExtract
from processing_chain.PatchGenerator import PatchGenerator
from processing_chain.Sparsifier import Sparsifier
from processing_chain.DiscardElements import discard_elements_simple
from processing_chain.BuildImage import BuildImage
from processing_chain.WebCam import WebCam
from processing_chain.Yolo5Segmentation import Yolo5Segmentation
# TODO required?
def show_torch_frame(
frame_torch: torch.Tensor,
title: str = "",
cmap: str = "viridis",
target: str = "pyplot",
):
frame_numpy = (
(frame_torch.movedim(0, -1) * 255).type(dtype=torch.uint8).cpu().numpy()
)
if target == "pyplot":
plt.imshow(frame_numpy, cmap=cmap)
plt.title(title)
plt.show()
if target == "cv2":
if frame_numpy.ndim == 3:
if frame_numpy.shape[-1] == 1:
frame_numpy = np.tile(frame_numpy, [1, 1, 3])
frame_numpy = (frame_numpy - frame_numpy.min()) / (
frame_numpy.max() - frame_numpy.min()
)
# print(frame_numpy.shape, frame_numpy.max(), frame_numpy.min())
cv2.namedWindow(title, cv2.WINDOW_NORMAL)
cv2.imshow(title, frame_numpy[:, :, (2, 1, 0)])
cv2.waitKey(1)
return
# TODO required?
def embed_image(frame_torch, out_height, out_width, init_value=0):
out_shape = torch.tensor(frame_torch.shape)
frame_width = frame_torch.shape[-1]
frame_height = frame_torch.shape[-2]
frame_width_idx0 = max([0, (frame_width - out_width) // 2])
frame_height_idx0 = max([0, (frame_height - out_height) // 2])
select_width = min([frame_width, out_width])
select_height = min([frame_height, out_height])
out_shape[-1] = out_width
out_shape[-2] = out_height
out_torch = init_value * torch.ones(tuple(out_shape))
out_width_idx0 = max([0, (out_width - frame_width) // 2])
out_height_idx0 = max([0, (out_height - frame_height) // 2])
out_torch[
...,
out_height_idx0 : (out_height_idx0 + select_height),
out_width_idx0 : (out_width_idx0 + select_width),
] = frame_torch[
...,
frame_height_idx0 : (frame_height_idx0 + select_height),
frame_width_idx0 : (frame_width_idx0 + select_width),
]
return out_torch
class OnlineEncoding:
# TODO: also pre-populate self-ies here?
#
# DEFINED IN "__init__":
#
# display (fixed)
# gabor (changeable)
# encoding (changeable)
# dictionary (changeable)
# control (fixed)
# path (fixed)
# verbose
# torch_device, default_dtype
# display_size_max_x_PIX, display_size_max_y_PIX
# padding_fill
# cap
# yolo
# classes_detect
#
#
# DEFINED IN "apply_parameter_changes":
#
# padding_PIX
# sigma_kernel_PIX, lambda_kernel_PIX
# out_x, out_y
# clocks, phosphene, clocks_filter
#
def __init__(self, source=0, verbose=False):
# Define parameters
# ========================================================
# Unit abbreviations:
# dva = degrees of visual angle
# pix = pixels
print("OE-Init: Defining default parameters...")
self.verbose = verbose
# display: Defines geometry of target display
# ========================================================
# The encoded image will be scaled such that it optimally uses
# the max space available. If the orignal image has a different aspect
# ratio than the display region, it will only use one spatial
# dimension (horizontal or vertical) to its full extent
#
# If one DVA corresponds to different PIX_per_DVA on the display,
# (i.e. varying distance observers from screen), it should be set
# larger than the largest PIX_per_DVA required, for avoiding
# extrapolation artefacts or blur.
#
self.display = {
"size_max_x_DVA": 10.0, # maximum x size of encoded image
"size_max_y_DVA": 10.0, # minimum y size of encoded image
"PIX_per_DVA": 40.0, # scaling factor pixels to DVA
"scale": "same_range", # "same_luminance" or "same_range"
}
# gabor: Defines paras of Gabor filters for contour extraction
# ==============================================================
self.gabor = {
"sigma_kernel_DVA": 0.06,
"lambda_kernel_DVA": 0.12,
"n_orientations": 8,
}
# encoding: Defines parameters of sparse encoding process
# ========================================================
# Roughly speaking, after contour extraction dictionary elements
# will be placed starting from the position with the highest
# overlap with the contour. Elements placed can be surrounded
# by a dead or inhibitory zone to prevent placing further elements
# too closely. The procedure will map 'n_patches_compute' elements
# and then stop. For each element one obtains an overlap with the
# contour image.
#
# After placement, the overlaps found are normalized to the max
# overlap found, and then all elements with a larger normalized overlap
# than 'overlap_threshold' will be selected. These remaining
# elements will comprise a 'full' encoding of the contour.
#
# To generate even sparser representations, the full encoding can
# be reduced to a certain percentage of elements in the full encoding
# by setting the variable 'percentages'
#
# Example: n_patches_compute = 100 reduced by overlap_threshold = 0.1
# to 80 elements. Requesting a percentage of 30% yields a representation
# with 24 elements.
#
self.encoding = {
"n_patches_compute": 100, # this amount of patches will be placed
"use_exp_deadzone": True, # parameters of Gaussian deadzone
"size_exp_deadzone_DVA": 1.20, # PREVIOUSLY 1.4283
"use_cutout_deadzone": True, # parameters of cutout deadzone
"size_cutout_deadzone_DVA": 0.65, # PREVIOUSLY 0.7575
"overlap_threshold": 0.1, # relative overlap threshold
"percentages": torch.tensor([100]),
}
self.number_of_patches = self.encoding["n_patches_compute"]
# dictionary: Defines parameters of dictionary
# ========================================================
self.dictionary = {
"size_DVA": 1.0, # PREVIOUSLY 1.25,
"clocks": None, # parameters for clocks dictionary, see below
"phosphene": None, # paramters for phosphene dictionary, see below
}
self.dictionary["phosphene"]: dict[float] = {
"sigma_width": 0.18, # DEFAULT 0.15, # half-width of Gaussian
}
self.dictionary["clocks"]: dict[int, int, float, float] = {
"n_dir": 8, # number of directions for clock pointer segments
"n_open": 4, # number of opening angles between two clock pointer segments
"pointer_width": 0.07, # PREVIOUSLY 0.05, # relative width and size of tip extension of clock pointer
"pointer_length": 0.18, # PREVIOUSLY 0.15, # relative length of clock pointer
}
# control: For controlling plotting options and flow of script
# ========================================================
self.control = {
"force_torch_use_cpu": False, # force using CPU even if GPU available
"show_capture": True, # shows captured image
"show_object": True, # shows detected object
"show_contours": True, # shows extracted contours
"show_percept": True, # shows percept
}
# specify classes to detect
class_person = 0
self.classes_detect = [class_person]
print(
"OE-Init: Defining paths, creating dirs, setting default device and datatype"
)
# path: Path infos for input and output images
# ========================================================
self.path = {"output": "test/output/level1/", "input": "test/images_test/"}
# Make output directories, if necessary: the place were we dump the new images to...
# os.makedirs(self.path["output"], mode=0o777, exist_ok=True)
# Check if GPU is available and use it, if possible
# =================================================
self.default_dtype = torch.float32
torch.set_default_dtype(self.default_dtype)
if self.control["force_torch_use_cpu"]:
torch_device: str = "cpu"
else:
torch_device: str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {torch_device} as TORCH device...")
self.torch_device = torch_device
print("OE-Init: Compute display scaling factors and padding RGB values")
# global scaling factors for all pixel-related length scales
self.display_size_max_x_PIX: float = (
self.display["size_max_x_DVA"] * self.display["PIX_per_DVA"]
)
self.display_size_max_y_PIX: float = (
self.display["size_max_y_DVA"] * self.display["PIX_per_DVA"]
)
# determine padding fill value
tmp = tv.transforms.Grayscale(num_output_channels=1)
tmp_value = torch.full((3, 1, 1), 0)
self.padding_fill: int = int(tmp(tmp_value).squeeze())
print(f"OE-Init: Opening camera source or video file '{source}'")
# open source
self.cap = WebCam(source)
if not self.cap.open_cam():
raise OSError(f"Opening source {source} failed!")
# get the video frame size, frame count and frame rate
frame_width = self.cap.cap_frame_width
frame_height = self.cap.cap_frame_height
fps = self.cap.cap_fps
print(
f"OE-Init: Processing frames of {frame_width} x {frame_height} @ {fps} fps."
)
# open output file if we want to save frames
# if output_file != None:
# out = cv2.VideoWriter(
# output_file,
# cv2.VideoWriter_fourcc(*"MJPG"),
# fps,
# (out_x, out_y),
# )
# if out == None:
# raise OSError(f"Can not open file {output_file} for writing!")
# get an instance of the Yolo segmentation network
print("OE-Init: initialize YOLO")
self.yolo = Yolo5Segmentation(torch_device=self.torch_device)
self.send_dictionaries = False
self.apply_parameter_changes()
return
def apply_parameter_changes(self):
# GET NEW PARAMETERS
print("OE-AppParChg: Computing sizes from new parameters")
### BLOCK: dictionary ----------------
# set patch size for both dictionaries, make sure it is odd number
dictionary_size_PIX: int = (
1
+ (int(self.dictionary["size_DVA"] * self.display["PIX_per_DVA"]) // 2) * 2
)
### BLOCK: gabor ---------------------
# convert contour-related parameters to pixel units
self.sigma_kernel_PIX: float = (
self.gabor["sigma_kernel_DVA"] * self.display["PIX_per_DVA"]
)
self.lambda_kernel_PIX: float = (
self.gabor["lambda_kernel_DVA"] * self.display["PIX_per_DVA"]
)
### BLOCK: gabor & dictionary ------------------
# Padding
# -------
self.padding_PIX: int = int(
max(3.0 * self.sigma_kernel_PIX, 1.1 * dictionary_size_PIX)
)
# define target video/representation width/height
multiple_of = 4
out_x = self.display_size_max_x_PIX + 2 * self.padding_PIX
out_y = self.display_size_max_y_PIX + 2 * self.padding_PIX
out_x += (multiple_of - (out_x % multiple_of)) % multiple_of
out_y += (multiple_of - (out_y % multiple_of)) % multiple_of
self.out_x = int(out_x)
self.out_y = int(out_y)
# generate dictionaries
# ---------------------
### BLOCK: dictionary --------------------------
print("OE-AppParChg: Generating dictionaries...")
patch_generator = PatchGenerator(torch_device=self.torch_device)
self.phosphene = patch_generator.alphabet_phosphene(
patch_size=dictionary_size_PIX,
sigma_width=self.dictionary["phosphene"]["sigma_width"]
* dictionary_size_PIX,
)
### BLOCK: dictionary & gabor --------------------------
self.clocks_filter, self.clocks, segments = patch_generator.alphabet_clocks(
patch_size=dictionary_size_PIX,
n_dir=self.dictionary["clocks"]["n_dir"],
n_filter=self.gabor["n_orientations"],
segment_width=self.dictionary["clocks"]["pointer_width"]
* dictionary_size_PIX,
segment_length=self.dictionary["clocks"]["pointer_length"]
* dictionary_size_PIX,
)
self.send_dictionaries = True
return
# classes_detect, out_x, out_y
def update(self, data_in):
# handle parameter change
if data_in:
print("Incoming -----------> ", data_in)
self.number_of_patches = data_in["number_of_patches"]
self.classes_detect = data_in["value"]
self.gabor["sigma_kernel_DVA"] = data_in["sigma_kernel_DVA"]
self.gabor["lambda_kernel_DVA"] = data_in["sigma_kernel_DVA"] * 2
self.gabor["n_orientations"] = data_in["n_orientations"]
self.dictionary["size_DVA"] = data_in["size_DVA"]
self.dictionary["phosphene"]["sigma_width"] = data_in["sigma_width"]
self.dictionary["clocks"]["n_dir"] = data_in["n_dir"]
self.dictionary["clocks"]["n_open"] = data_in["n_dir"] // 2
self.dictionary["clocks"]["pointer_width"] = data_in["pointer_width"]
self.dictionary["clocks"]["pointer_length"] = data_in["pointer_length"]
self.encoding["use_exp_deadzone"] = data_in["use_exp_deadzone"]
self.encoding["size_exp_deadzone_DVA"] = data_in["size_exp_deadzone_DVA"]
self.encoding["use_cutout_deadzone"] = data_in["use_cutout_deadzone"]
self.encoding["size_cutout_deadzone_DVA"] = data_in[
"size_cutout_deadzone_DVA"
]
self.control["show_capture"] = data_in["enable_cam"]
self.control["show_object"] = data_in["enable_yolo"]
self.control["show_contours"] = data_in["enable_contour"]
# TODO Fenster zumachen
self.apply_parameter_changes()
# some constants for addressing specific components of output arrays
image_id_CONST: int = 0
overlap_index_CONST: int = 1
# format: color_RGB, height, width <class 'torch.tensor'> float, range=0,1
print("OE-ProcessFrame: capturing frame")
frame = self.cap.get_frame()
if frame == None:
raise OSError(f"Can not capture frame {i_frame}")
if self.verbose:
if self.control["show_capture"]:
show_torch_frame(frame, title="Captured", target=self.verbose)
else:
try:
cv2.destroyWindow("Captured")
except:
pass
# perform segmentation
frame = frame.to(device=self.torch_device)
print("OE-ProcessFrame: frame segmentation by YOLO")
frame_segmented = self.yolo(frame.unsqueeze(0), classes=self.classes_detect)
# This extracts the frame in x to convert the mask in a video format
if self.yolo.found_class_id != None:
n_found = len(self.yolo.found_class_id)
print(
f"OE-ProcessFrame: {n_found} occurrences of desired object found in frame!"
)
mask = frame_segmented[0]
# is there something in the mask?
if not mask.sum() == 0:
# yes, cut only the part of the frame that has our object of interest
frame_masked = mask * frame
x_height = mask.sum(axis=-2)
x_indices = torch.where(x_height > 0)
x_max = x_indices[0].max() + 1
x_min = x_indices[0].min()
y_height = mask.sum(axis=-1)
y_indices = torch.where(y_height > 0)
y_max = y_indices[0].max() + 1
y_min = y_indices[0].min()
frame_cut = frame_masked[:, y_min:y_max, x_min:x_max]
else:
print(f"OE-ProcessFrame: Mask contains all zeros in current frame!")
frame_cut = None
else:
print(f"OE-ProcessFrame: No objects found in current frame!")
frame_cut = None
if frame_cut == None:
# out_torch = torch.zeros([self.out_y, self.out_x])
position_selection = torch.zeros((1, 0, 3))
contour_shape = [1, self.gabor["n_orientations"], 1, 1]
else:
if self.verbose:
if self.control["show_object"]:
show_torch_frame(
frame_cut, title="Selected Object", target=self.verbose
)
else:
try:
cv2.destroyWindow("Selected Object")
except:
pass
# UDO: from here on, we proceed as before, just handing
# UDO: over the frame_cut --> image
image = frame_cut
# Determine target size of image
# image: [RGB, Height, Width], dtype= tensor.torch.uint8
print("OE-ProcessFrame: Computing downsampling factor image -> display")
f_x: float = self.display_size_max_x_PIX / image.shape[-1]
f_y: float = self.display_size_max_y_PIX / image.shape[-2]
f_xy_min: float = min(f_x, f_y)
downsampling_x: int = int(f_xy_min * image.shape[-1])
downsampling_y: int = int(f_xy_min * image.shape[-2])
# CURRENTLY we do not crop in the end...
# Image size for removing the fft crop later
# center_crop_x: int = downsampling_x
# center_crop_y: int = downsampling_y
# define contour extraction processing chain
# ------------------------------------------
print("OE-ProcessFrame: Extracting contours")
train_processing_chain = tv.transforms.Compose(
transforms=[
tv.transforms.Grayscale(num_output_channels=1), # RGB to grayscale
tv.transforms.Resize(
size=(downsampling_y, downsampling_x)
), # downsampling
tv.transforms.Pad( # extra white padding around the picture
padding=(self.padding_PIX, self.padding_PIX),
fill=self.padding_fill,
),
ContourExtract( # contour extraction
n_orientations=self.gabor["n_orientations"],
sigma_kernel=self.sigma_kernel_PIX,
lambda_kernel=self.lambda_kernel_PIX,
torch_device=self.torch_device,
),
# CURRENTLY we do not crop in the end!
# tv.transforms.CenterCrop( # Remove the padding
# size=(center_crop_x, center_crop_y)
# ),
],
)
# ...with and without orientation channels
contour = train_processing_chain(image.unsqueeze(0))
contour_collapse = train_processing_chain.transforms[-1].create_collapse(
contour
)
if self.verbose:
if self.control["show_contours"]:
show_torch_frame(
contour_collapse,
title="Contours Extracted",
cmap="gray",
target=self.verbose,
)
else:
try:
cv2.destroyWindow("Contours Extracted")
except:
pass
# generate a prior for mapping the contour to the dictionary
# CURRENTLY we use an uniform prior...
# ----------------------------------------------------------
dictionary_prior = torch.ones(
(self.clocks_filter.shape[0]),
dtype=self.default_dtype,
device=torch.device(self.torch_device),
)
# instantiate and execute sparsifier
# ----------------------------------
print("OE-ProcessFrame: Performing sparsification")
sparsifier = Sparsifier(
dictionary_filter=self.clocks_filter,
dictionary=self.clocks,
dictionary_prior=dictionary_prior,
number_of_patches=self.encoding["n_patches_compute"],
size_exp_deadzone=self.encoding["size_exp_deadzone_DVA"]
* self.display["PIX_per_DVA"],
plot_use_map=False, # self.control["plot_deadzone"],
deadzone_exp=self.encoding["use_exp_deadzone"],
deadzone_hard_cutout=self.encoding["use_cutout_deadzone"],
deadzone_hard_cutout_size=self.encoding["size_cutout_deadzone_DVA"]
* self.display["PIX_per_DVA"],
padding_deadzone_size_x=self.padding_PIX,
padding_deadzone_size_y=self.padding_PIX,
torch_device=self.torch_device,
)
sparsifier(contour)
assert sparsifier.position_found is not None
# extract and normalize the overlap found
overlap_found = sparsifier.overlap_found[
image_id_CONST, :, overlap_index_CONST
]
overlap_found = overlap_found / overlap_found.max()
# get overlap above certain threshold, extract corresponding elements
overlap_idcs_valid = torch.where(
overlap_found >= self.encoding["overlap_threshold"]
)[0]
position_selection = sparsifier.position_found[
image_id_CONST : image_id_CONST + 1, overlap_idcs_valid, :
]
n_elements = len(overlap_idcs_valid)
print(f"OE-ProcessFrame: {n_elements} elements positioned!")
contour_shape = contour.shape
n_cut = min(position_selection.shape[-2], self.number_of_patches)
data_out = {
"position_found": position_selection[:, :n_cut, :],
"canvas_size": contour_shape,
}
if self.send_dictionaries:
data_out["features"] = self.clocks
data_out["phosphene"] = self.phosphene
self.send_dictionaries = False
return data_out
def __del__(self):
print("OE-Delete: exiting gracefully!")
self.cap.close_cam()
try:
cv2.destroyAllWindows()
except:
pass
# TODO no output file
# TODO detect end of file if input is video file
if __name__ == "__main__":
verbose = "cv2"
source = 0 # "GoProWireless"
frame_count = 20
i_frame = 0
data_in = None
oe = OnlineEncoding(source=source, verbose=verbose)
# Loop over the frames
while i_frame < frame_count:
i_frame += 1
if i_frame == (frame_count // 3):
oe.dictionary["size_DVA"] = 0.5
oe.apply_parameter_changes()
if i_frame == (frame_count * 2 // 3):
oe.dictionary["size_DVA"] = 2.0
oe.apply_parameter_changes()
data_out = oe.update(data_in)
position_selection = data_out["position_found"]
contour_shape = data_out["canvas_size"]
# SENDE/EMPANGSLOGIK:
#
# <- PACKET empfangen
# Parameteränderungen?
# in Instanz se übertragen
# "apply_parameter_changes" aufrufen
# folgende variablen in sendepacket:
# se.clocks, se.phosphene, se.out_x, se.out_y
# "process_frame"
# folgende variablen in sendepacket:
# position_selection, contour_shape
# -> PACKET zurückgeben
# build the full image!
image_clocks = BuildImage(
canvas_size=contour_shape,
dictionary=oe.clocks,
position_found=position_selection,
default_dtype=oe.default_dtype,
torch_device=oe.torch_device,
)
# image_phosphenes = BuildImage(
# canvas_size=contour.shape,
# dictionary=dictionary_phosphene,
# position_found=position_selection,
# default_dtype=default_dtype,
# torch_device=torch_device,
# )
# normalize to range [0...1]
m = image_clocks[0].max()
if m == 0:
m = 1
image_clocks_normalized = image_clocks[0] / m
# embed into frame of desired output size
out_torch = embed_image(
image_clocks_normalized, out_height=oe.out_y, out_width=oe.out_x
)
# show, if desired
if verbose:
if oe.control["show_percept"]:
show_torch_frame(
out_torch, title="Percept", cmap="gray", target=verbose
)
# if output_file != None:
# out_pixel = (
# (out_torch * torch.ones([3, 1, 1]) * 255)
# .type(dtype=torch.uint8)
# .movedim(0, -1)
# .numpy()
# )
# out.write(out_pixel)
del oe
# if output_file != None:
# out.release()
# %%