Add files via upload
This commit is contained in:
parent
c0c5018a61
commit
380c2aa8b4
21 changed files with 6167 additions and 0 deletions
80
utils/__init__.py
Normal file
80
utils/__init__.py
Normal file
|
@ -0,0 +1,80 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
utils/initialization
|
||||||
|
"""
|
||||||
|
|
||||||
|
import contextlib
|
||||||
|
import platform
|
||||||
|
import threading
|
||||||
|
|
||||||
|
|
||||||
|
def emojis(str=''):
|
||||||
|
# Return platform-dependent emoji-safe version of string
|
||||||
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
||||||
|
|
||||||
|
|
||||||
|
class TryExcept(contextlib.ContextDecorator):
|
||||||
|
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
||||||
|
def __init__(self, msg=''):
|
||||||
|
self.msg = msg
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, value, traceback):
|
||||||
|
if value:
|
||||||
|
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def threaded(func):
|
||||||
|
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
||||||
|
thread.start()
|
||||||
|
return thread
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def join_threads(verbose=False):
|
||||||
|
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
||||||
|
main_thread = threading.current_thread()
|
||||||
|
for t in threading.enumerate():
|
||||||
|
if t is not main_thread:
|
||||||
|
if verbose:
|
||||||
|
print(f'Joining thread {t.name}')
|
||||||
|
t.join()
|
||||||
|
|
||||||
|
|
||||||
|
def notebook_init(verbose=True):
|
||||||
|
# Check system software and hardware
|
||||||
|
print('Checking setup...')
|
||||||
|
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
from utils.general import check_font, check_requirements, is_colab
|
||||||
|
from utils.torch_utils import select_device # imports
|
||||||
|
|
||||||
|
check_font()
|
||||||
|
|
||||||
|
import psutil
|
||||||
|
from IPython import display # to display images and clear console output
|
||||||
|
|
||||||
|
if is_colab():
|
||||||
|
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
||||||
|
|
||||||
|
# System info
|
||||||
|
if verbose:
|
||||||
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||||
|
ram = psutil.virtual_memory().total
|
||||||
|
total, used, free = shutil.disk_usage("/")
|
||||||
|
display.clear_output()
|
||||||
|
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
||||||
|
else:
|
||||||
|
s = ''
|
||||||
|
|
||||||
|
select_device(newline=False)
|
||||||
|
print(emojis(f'Setup complete ✅ {s}'))
|
||||||
|
return display
|
103
utils/activations.py
Normal file
103
utils/activations.py
Normal file
|
@ -0,0 +1,103 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Activation functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class SiLU(nn.Module):
|
||||||
|
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Hardswish(nn.Module):
|
||||||
|
# Hard-SiLU activation
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
||||||
|
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
||||||
|
|
||||||
|
|
||||||
|
class Mish(nn.Module):
|
||||||
|
# Mish activation https://github.com/digantamisra98/Mish
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * F.softplus(x).tanh()
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientMish(nn.Module):
|
||||||
|
# Mish activation memory-efficient
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
fx = F.softplus(x).tanh()
|
||||||
|
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
class FReLU(nn.Module):
|
||||||
|
# FReLU activation https://arxiv.org/abs/2007.11824
|
||||||
|
def __init__(self, c1, k=3): # ch_in, kernel
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.max(x, self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class AconC(nn.Module):
|
||||||
|
r""" ACON activation (activate or not)
|
||||||
|
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
||||||
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, c1):
|
||||||
|
super().__init__()
|
||||||
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||||
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||||
|
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
dpx = (self.p1 - self.p2) * x
|
||||||
|
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
||||||
|
|
||||||
|
|
||||||
|
class MetaAconC(nn.Module):
|
||||||
|
r""" ACON activation (activate or not)
|
||||||
|
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
||||||
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
||||||
|
super().__init__()
|
||||||
|
c2 = max(r, c1 // r)
|
||||||
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||||
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
||||||
|
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
||||||
|
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
||||||
|
# self.bn1 = nn.BatchNorm2d(c2)
|
||||||
|
# self.bn2 = nn.BatchNorm2d(c1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
||||||
|
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
||||||
|
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
||||||
|
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
||||||
|
dpx = (self.p1 - self.p2) * x
|
||||||
|
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
397
utils/augmentations.py
Normal file
397
utils/augmentations.py
Normal file
|
@ -0,0 +1,397 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Image augmentation functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import random
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as T
|
||||||
|
import torchvision.transforms.functional as TF
|
||||||
|
|
||||||
|
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
||||||
|
from utils.metrics import bbox_ioa
|
||||||
|
|
||||||
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
||||||
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
||||||
|
|
||||||
|
|
||||||
|
class Albumentations:
|
||||||
|
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
||||||
|
def __init__(self, size=640):
|
||||||
|
self.transform = None
|
||||||
|
prefix = colorstr('albumentations: ')
|
||||||
|
try:
|
||||||
|
import albumentations as A
|
||||||
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||||
|
|
||||||
|
T = [
|
||||||
|
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
||||||
|
A.Blur(p=0.01),
|
||||||
|
A.MedianBlur(p=0.01),
|
||||||
|
A.ToGray(p=0.01),
|
||||||
|
A.CLAHE(p=0.01),
|
||||||
|
A.RandomBrightnessContrast(p=0.0),
|
||||||
|
A.RandomGamma(p=0.0),
|
||||||
|
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
||||||
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
||||||
|
|
||||||
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||||
|
except ImportError: # package not installed, skip
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix}{e}')
|
||||||
|
|
||||||
|
def __call__(self, im, labels, p=1.0):
|
||||||
|
if self.transform and random.random() < p:
|
||||||
|
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
||||||
|
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
||||||
|
return im, labels
|
||||||
|
|
||||||
|
|
||||||
|
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
||||||
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
||||||
|
return TF.normalize(x, mean, std, inplace=inplace)
|
||||||
|
|
||||||
|
|
||||||
|
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
||||||
|
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
||||||
|
for i in range(3):
|
||||||
|
x[:, i] = x[:, i] * std[i] + mean[i]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||||
|
# HSV color-space augmentation
|
||||||
|
if hgain or sgain or vgain:
|
||||||
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||||
|
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
||||||
|
dtype = im.dtype # uint8
|
||||||
|
|
||||||
|
x = np.arange(0, 256, dtype=r.dtype)
|
||||||
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||||
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||||
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||||
|
|
||||||
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
||||||
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
||||||
|
|
||||||
|
|
||||||
|
def hist_equalize(im, clahe=True, bgr=False):
|
||||||
|
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
||||||
|
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
||||||
|
if clahe:
|
||||||
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
||||||
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
||||||
|
else:
|
||||||
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
||||||
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
||||||
|
|
||||||
|
|
||||||
|
def replicate(im, labels):
|
||||||
|
# Replicate labels
|
||||||
|
h, w = im.shape[:2]
|
||||||
|
boxes = labels[:, 1:].astype(int)
|
||||||
|
x1, y1, x2, y2 = boxes.T
|
||||||
|
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||||
|
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||||
|
x1b, y1b, x2b, y2b = boxes[i]
|
||||||
|
bh, bw = y2b - y1b, x2b - x1b
|
||||||
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||||
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||||
|
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
||||||
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||||
|
|
||||||
|
return im, labels
|
||||||
|
|
||||||
|
|
||||||
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
||||||
|
# Resize and pad image while meeting stride-multiple constraints
|
||||||
|
shape = im.shape[:2] # current shape [height, width]
|
||||||
|
if isinstance(new_shape, int):
|
||||||
|
new_shape = (new_shape, new_shape)
|
||||||
|
|
||||||
|
# Scale ratio (new / old)
|
||||||
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||||
|
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
||||||
|
r = min(r, 1.0)
|
||||||
|
|
||||||
|
# Compute padding
|
||||||
|
ratio = r, r # width, height ratios
|
||||||
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||||
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||||
|
if auto: # minimum rectangle
|
||||||
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||||||
|
elif scaleFill: # stretch
|
||||||
|
dw, dh = 0.0, 0.0
|
||||||
|
new_unpad = (new_shape[1], new_shape[0])
|
||||||
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||||
|
|
||||||
|
dw /= 2 # divide padding into 2 sides
|
||||||
|
dh /= 2
|
||||||
|
|
||||||
|
if shape[::-1] != new_unpad: # resize
|
||||||
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||||
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||||
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||||
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||||
|
return im, ratio, (dw, dh)
|
||||||
|
|
||||||
|
|
||||||
|
def random_perspective(im,
|
||||||
|
targets=(),
|
||||||
|
segments=(),
|
||||||
|
degrees=10,
|
||||||
|
translate=.1,
|
||||||
|
scale=.1,
|
||||||
|
shear=10,
|
||||||
|
perspective=0.0,
|
||||||
|
border=(0, 0)):
|
||||||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
||||||
|
# targets = [cls, xyxy]
|
||||||
|
|
||||||
|
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||||
|
width = im.shape[1] + border[1] * 2
|
||||||
|
|
||||||
|
# Center
|
||||||
|
C = np.eye(3)
|
||||||
|
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||||||
|
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||||||
|
|
||||||
|
# Perspective
|
||||||
|
P = np.eye(3)
|
||||||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||||
|
|
||||||
|
# Rotation and Scale
|
||||||
|
R = np.eye(3)
|
||||||
|
a = random.uniform(-degrees, degrees)
|
||||||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||||
|
s = random.uniform(1 - scale, 1 + scale)
|
||||||
|
# s = 2 ** random.uniform(-scale, scale)
|
||||||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||||
|
|
||||||
|
# Shear
|
||||||
|
S = np.eye(3)
|
||||||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||||
|
|
||||||
|
# Translation
|
||||||
|
T = np.eye(3)
|
||||||
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||||
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||||
|
|
||||||
|
# Combined rotation matrix
|
||||||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||||
|
if perspective:
|
||||||
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
else: # affine
|
||||||
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
|
||||||
|
# Visualize
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||||
|
# ax[0].imshow(im[:, :, ::-1]) # base
|
||||||
|
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||||||
|
|
||||||
|
# Transform label coordinates
|
||||||
|
n = len(targets)
|
||||||
|
if n:
|
||||||
|
use_segments = any(x.any() for x in segments)
|
||||||
|
new = np.zeros((n, 4))
|
||||||
|
if use_segments: # warp segments
|
||||||
|
segments = resample_segments(segments) # upsample
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
xy = np.ones((len(segment), 3))
|
||||||
|
xy[:, :2] = segment
|
||||||
|
xy = xy @ M.T # transform
|
||||||
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
||||||
|
|
||||||
|
# clip
|
||||||
|
new[i] = segment2box(xy, width, height)
|
||||||
|
|
||||||
|
else: # warp boxes
|
||||||
|
xy = np.ones((n * 4, 3))
|
||||||
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||||
|
xy = xy @ M.T # transform
|
||||||
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
||||||
|
|
||||||
|
# create new boxes
|
||||||
|
x = xy[:, [0, 2, 4, 6]]
|
||||||
|
y = xy[:, [1, 3, 5, 7]]
|
||||||
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||||
|
|
||||||
|
# clip
|
||||||
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
||||||
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
||||||
|
|
||||||
|
# filter candidates
|
||||||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
||||||
|
targets = targets[i]
|
||||||
|
targets[:, 1:5] = new[i]
|
||||||
|
|
||||||
|
return im, targets
|
||||||
|
|
||||||
|
|
||||||
|
def copy_paste(im, labels, segments, p=0.5):
|
||||||
|
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
||||||
|
n = len(segments)
|
||||||
|
if p and n:
|
||||||
|
h, w, c = im.shape # height, width, channels
|
||||||
|
im_new = np.zeros(im.shape, np.uint8)
|
||||||
|
for j in random.sample(range(n), k=round(p * n)):
|
||||||
|
l, s = labels[j], segments[j]
|
||||||
|
box = w - l[3], l[2], w - l[1], l[4]
|
||||||
|
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||||
|
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
||||||
|
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
||||||
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
||||||
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
||||||
|
|
||||||
|
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
||||||
|
i = cv2.flip(im_new, 1).astype(bool)
|
||||||
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||||||
|
|
||||||
|
return im, labels, segments
|
||||||
|
|
||||||
|
|
||||||
|
def cutout(im, labels, p=0.5):
|
||||||
|
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||||
|
if random.random() < p:
|
||||||
|
h, w = im.shape[:2]
|
||||||
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||||
|
for s in scales:
|
||||||
|
mask_h = random.randint(1, int(h * s)) # create random masks
|
||||||
|
mask_w = random.randint(1, int(w * s))
|
||||||
|
|
||||||
|
# box
|
||||||
|
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||||
|
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||||
|
xmax = min(w, xmin + mask_w)
|
||||||
|
ymax = min(h, ymin + mask_h)
|
||||||
|
|
||||||
|
# apply random color mask
|
||||||
|
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||||
|
|
||||||
|
# return unobscured labels
|
||||||
|
if len(labels) and s > 0.03:
|
||||||
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||||
|
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h)) # intersection over area
|
||||||
|
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||||
|
|
||||||
|
return labels
|
||||||
|
|
||||||
|
|
||||||
|
def mixup(im, labels, im2, labels2):
|
||||||
|
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
||||||
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||||||
|
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||||||
|
labels = np.concatenate((labels, labels2), 0)
|
||||||
|
return im, labels
|
||||||
|
|
||||||
|
|
||||||
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
||||||
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||||
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||||
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||||
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
||||||
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
||||||
|
|
||||||
|
|
||||||
|
def classify_albumentations(
|
||||||
|
augment=True,
|
||||||
|
size=224,
|
||||||
|
scale=(0.08, 1.0),
|
||||||
|
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
||||||
|
hflip=0.5,
|
||||||
|
vflip=0.0,
|
||||||
|
jitter=0.4,
|
||||||
|
mean=IMAGENET_MEAN,
|
||||||
|
std=IMAGENET_STD,
|
||||||
|
auto_aug=False):
|
||||||
|
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
||||||
|
prefix = colorstr('albumentations: ')
|
||||||
|
try:
|
||||||
|
import albumentations as A
|
||||||
|
from albumentations.pytorch import ToTensorV2
|
||||||
|
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
||||||
|
if augment: # Resize and crop
|
||||||
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
||||||
|
if auto_aug:
|
||||||
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
||||||
|
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
||||||
|
else:
|
||||||
|
if hflip > 0:
|
||||||
|
T += [A.HorizontalFlip(p=hflip)]
|
||||||
|
if vflip > 0:
|
||||||
|
T += [A.VerticalFlip(p=vflip)]
|
||||||
|
if jitter > 0:
|
||||||
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
||||||
|
T += [A.ColorJitter(*color_jitter, 0)]
|
||||||
|
else: # Use fixed crop for eval set (reproducibility)
|
||||||
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||||||
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||||||
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||||
|
return A.Compose(T)
|
||||||
|
|
||||||
|
except ImportError: # package not installed, skip
|
||||||
|
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'{prefix}{e}')
|
||||||
|
|
||||||
|
|
||||||
|
def classify_transforms(size=224):
|
||||||
|
# Transforms to apply if albumentations not installed
|
||||||
|
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
||||||
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||||
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
||||||
|
|
||||||
|
|
||||||
|
class LetterBox:
|
||||||
|
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||||
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
||||||
|
super().__init__()
|
||||||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||||
|
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
||||||
|
self.stride = stride # used with auto
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC
|
||||||
|
imh, imw = im.shape[:2]
|
||||||
|
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
||||||
|
h, w = round(imh * r), round(imw * r) # resized image
|
||||||
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
||||||
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
||||||
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
||||||
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
||||||
|
return im_out
|
||||||
|
|
||||||
|
|
||||||
|
class CenterCrop:
|
||||||
|
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
||||||
|
def __init__(self, size=640):
|
||||||
|
super().__init__()
|
||||||
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC
|
||||||
|
imh, imw = im.shape[:2]
|
||||||
|
m = min(imh, imw) # min dimension
|
||||||
|
top, left = (imh - m) // 2, (imw - m) // 2
|
||||||
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
|
|
||||||
|
class ToTensor:
|
||||||
|
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
||||||
|
def __init__(self, half=False):
|
||||||
|
super().__init__()
|
||||||
|
self.half = half
|
||||||
|
|
||||||
|
def __call__(self, im): # im = np.array HWC in BGR order
|
||||||
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
||||||
|
im = torch.from_numpy(im) # to torch
|
||||||
|
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
||||||
|
im /= 255.0 # 0-255 to 0.0-1.0
|
||||||
|
return im
|
169
utils/autoanchor.py
Normal file
169
utils/autoanchor.py
Normal file
|
@ -0,0 +1,169 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
AutoAnchor utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils import TryExcept
|
||||||
|
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
||||||
|
|
||||||
|
PREFIX = colorstr('AutoAnchor: ')
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchor_order(m):
|
||||||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||||
|
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
||||||
|
da = a[-1] - a[0] # delta a
|
||||||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
|
if da and (da.sign() != ds.sign()): # same order
|
||||||
|
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
||||||
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
@TryExcept(f'{PREFIX}ERROR')
|
||||||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
|
# Check anchor fit to data, recompute if necessary
|
||||||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||||
|
|
||||||
|
def metric(k): # compute metric
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||||
|
best = x.max(1)[0] # best_x
|
||||||
|
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
||||||
|
bpr = (best > 1 / thr).float().mean() # best possible recall
|
||||||
|
return bpr, aat
|
||||||
|
|
||||||
|
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
||||||
|
anchors = m.anchors.clone() * stride # current anchors
|
||||||
|
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
||||||
|
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
||||||
|
if bpr > 0.98: # threshold to recompute
|
||||||
|
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
||||||
|
else:
|
||||||
|
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
||||||
|
na = m.anchors.numel() // 2 # number of anchors
|
||||||
|
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
|
new_bpr = metric(anchors)[0]
|
||||||
|
if new_bpr > bpr: # replace anchors
|
||||||
|
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
|
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
||||||
|
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
||||||
|
m.anchors /= stride
|
||||||
|
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
||||||
|
else:
|
||||||
|
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
||||||
|
LOGGER.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
dataset: path to data.yaml, or a loaded dataset
|
||||||
|
n: number of anchors
|
||||||
|
img_size: image size used for training
|
||||||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
gen: generations to evolve anchors using genetic algorithm
|
||||||
|
verbose: print all results
|
||||||
|
|
||||||
|
Return:
|
||||||
|
k: kmeans evolved anchors
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||||||
|
"""
|
||||||
|
from scipy.cluster.vq import kmeans
|
||||||
|
|
||||||
|
npr = np.random
|
||||||
|
thr = 1 / thr
|
||||||
|
|
||||||
|
def metric(k, wh): # compute metrics
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
||||||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||||
|
return x, x.max(1)[0] # x, best_x
|
||||||
|
|
||||||
|
def anchor_fitness(k): # mutation fitness
|
||||||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||||
|
return (best * (best > thr).float()).mean() # fitness
|
||||||
|
|
||||||
|
def print_results(k, verbose=True):
|
||||||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||||
|
x, best = metric(k, wh0)
|
||||||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||||
|
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
||||||
|
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
||||||
|
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
||||||
|
for x in k:
|
||||||
|
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
||||||
|
if verbose:
|
||||||
|
LOGGER.info(s[:-2])
|
||||||
|
return k
|
||||||
|
|
||||||
|
if isinstance(dataset, str): # *.yaml file
|
||||||
|
with open(dataset, errors='ignore') as f:
|
||||||
|
data_dict = yaml.safe_load(f) # model dict
|
||||||
|
from utils.dataloaders import LoadImagesAndLabels
|
||||||
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
|
|
||||||
|
# Get label wh
|
||||||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||||
|
|
||||||
|
# Filter
|
||||||
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
|
if i:
|
||||||
|
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
||||||
|
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
||||||
|
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||||
|
|
||||||
|
# Kmeans init
|
||||||
|
try:
|
||||||
|
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||||
|
assert n <= len(wh) # apply overdetermined constraint
|
||||||
|
s = wh.std(0) # sigmas for whitening
|
||||||
|
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
||||||
|
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
||||||
|
except Exception:
|
||||||
|
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
||||||
|
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
||||||
|
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
||||||
|
k = print_results(k, verbose=False)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
# k, d = [None] * 20, [None] * 20
|
||||||
|
# for i in tqdm(range(1, 21)):
|
||||||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||||
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
|
# Evolve
|
||||||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
|
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
||||||
|
for _ in pbar:
|
||||||
|
v = np.ones(sh)
|
||||||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||||
|
kg = (k.copy() * v).clip(min=2.0)
|
||||||
|
fg = anchor_fitness(kg)
|
||||||
|
if fg > f:
|
||||||
|
f, k = fg, kg.copy()
|
||||||
|
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||||
|
if verbose:
|
||||||
|
print_results(k, verbose)
|
||||||
|
|
||||||
|
return print_results(k).astype(np.float32)
|
72
utils/autobatch.py
Normal file
72
utils/autobatch.py
Normal file
|
@ -0,0 +1,72 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Auto-batch utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from utils.general import LOGGER, colorstr
|
||||||
|
from utils.torch_utils import profile
|
||||||
|
|
||||||
|
|
||||||
|
def check_train_batch_size(model, imgsz=640, amp=True):
|
||||||
|
# Check YOLOv5 training batch size
|
||||||
|
with torch.cuda.amp.autocast(amp):
|
||||||
|
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
||||||
|
|
||||||
|
|
||||||
|
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
||||||
|
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
|
||||||
|
# Usage:
|
||||||
|
# import torch
|
||||||
|
# from utils.autobatch import autobatch
|
||||||
|
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
||||||
|
# print(autobatch(model))
|
||||||
|
|
||||||
|
# Check device
|
||||||
|
prefix = colorstr('AutoBatch: ')
|
||||||
|
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
if device.type == 'cpu':
|
||||||
|
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
||||||
|
return batch_size
|
||||||
|
if torch.backends.cudnn.benchmark:
|
||||||
|
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
||||||
|
return batch_size
|
||||||
|
|
||||||
|
# Inspect CUDA memory
|
||||||
|
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
||||||
|
d = str(device).upper() # 'CUDA:0'
|
||||||
|
properties = torch.cuda.get_device_properties(device) # device properties
|
||||||
|
t = properties.total_memory / gb # GiB total
|
||||||
|
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
||||||
|
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
||||||
|
f = t - (r + a) # GiB free
|
||||||
|
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
||||||
|
|
||||||
|
# Profile batch sizes
|
||||||
|
batch_sizes = [1, 2, 4, 8, 16]
|
||||||
|
try:
|
||||||
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
||||||
|
results = profile(img, model, n=3, device=device)
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.warning(f'{prefix}{e}')
|
||||||
|
|
||||||
|
# Fit a solution
|
||||||
|
y = [x[2] for x in results if x] # memory [2]
|
||||||
|
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
||||||
|
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
||||||
|
if None in results: # some sizes failed
|
||||||
|
i = results.index(None) # first fail index
|
||||||
|
if b >= batch_sizes[i]: # y intercept above failure point
|
||||||
|
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
||||||
|
if b < 1 or b > 1024: # b outside of safe range
|
||||||
|
b = batch_size
|
||||||
|
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
||||||
|
|
||||||
|
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
||||||
|
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
||||||
|
return b
|
76
utils/callbacks.py
Normal file
76
utils/callbacks.py
Normal file
|
@ -0,0 +1,76 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Callback utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import threading
|
||||||
|
|
||||||
|
|
||||||
|
class Callbacks:
|
||||||
|
""""
|
||||||
|
Handles all registered callbacks for YOLOv5 Hooks
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# Define the available callbacks
|
||||||
|
self._callbacks = {
|
||||||
|
'on_pretrain_routine_start': [],
|
||||||
|
'on_pretrain_routine_end': [],
|
||||||
|
'on_train_start': [],
|
||||||
|
'on_train_epoch_start': [],
|
||||||
|
'on_train_batch_start': [],
|
||||||
|
'optimizer_step': [],
|
||||||
|
'on_before_zero_grad': [],
|
||||||
|
'on_train_batch_end': [],
|
||||||
|
'on_train_epoch_end': [],
|
||||||
|
'on_val_start': [],
|
||||||
|
'on_val_batch_start': [],
|
||||||
|
'on_val_image_end': [],
|
||||||
|
'on_val_batch_end': [],
|
||||||
|
'on_val_end': [],
|
||||||
|
'on_fit_epoch_end': [], # fit = train + val
|
||||||
|
'on_model_save': [],
|
||||||
|
'on_train_end': [],
|
||||||
|
'on_params_update': [],
|
||||||
|
'teardown': [],}
|
||||||
|
self.stop_training = False # set True to interrupt training
|
||||||
|
|
||||||
|
def register_action(self, hook, name='', callback=None):
|
||||||
|
"""
|
||||||
|
Register a new action to a callback hook
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hook: The callback hook name to register the action to
|
||||||
|
name: The name of the action for later reference
|
||||||
|
callback: The callback to fire
|
||||||
|
"""
|
||||||
|
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||||
|
assert callable(callback), f"callback '{callback}' is not callable"
|
||||||
|
self._callbacks[hook].append({'name': name, 'callback': callback})
|
||||||
|
|
||||||
|
def get_registered_actions(self, hook=None):
|
||||||
|
""""
|
||||||
|
Returns all the registered actions by callback hook
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hook: The name of the hook to check, defaults to all
|
||||||
|
"""
|
||||||
|
return self._callbacks[hook] if hook else self._callbacks
|
||||||
|
|
||||||
|
def run(self, hook, *args, thread=False, **kwargs):
|
||||||
|
"""
|
||||||
|
Loop through the registered actions and fire all callbacks on main thread
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hook: The name of the hook to check, defaults to all
|
||||||
|
args: Arguments to receive from YOLOv5
|
||||||
|
thread: (boolean) Run callbacks in daemon thread
|
||||||
|
kwargs: Keyword Arguments to receive from YOLOv5
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
||||||
|
for logger in self._callbacks[hook]:
|
||||||
|
if thread:
|
||||||
|
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
||||||
|
else:
|
||||||
|
logger['callback'](*args, **kwargs)
|
1218
utils/dataloaders.py
Normal file
1218
utils/dataloaders.py
Normal file
File diff suppressed because it is too large
Load diff
108
utils/downloads.py
Normal file
108
utils/downloads.py
Normal file
|
@ -0,0 +1,108 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Download utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import urllib
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def is_url(url, check=True):
|
||||||
|
# Check if string is URL and check if URL exists
|
||||||
|
try:
|
||||||
|
url = str(url)
|
||||||
|
result = urllib.parse.urlparse(url)
|
||||||
|
assert all([result.scheme, result.netloc]) # check if is url
|
||||||
|
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
||||||
|
except (AssertionError, urllib.request.HTTPError):
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def gsutil_getsize(url=''):
|
||||||
|
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||||
|
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||||
|
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||||
|
|
||||||
|
|
||||||
|
def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
|
||||||
|
# Return downloadable file size in bytes
|
||||||
|
response = requests.head(url, allow_redirects=True)
|
||||||
|
return int(response.headers.get('content-length', -1))
|
||||||
|
|
||||||
|
|
||||||
|
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
||||||
|
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
||||||
|
from utils.general import LOGGER
|
||||||
|
|
||||||
|
file = Path(file)
|
||||||
|
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
||||||
|
try: # url1
|
||||||
|
LOGGER.info(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
||||||
|
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
||||||
|
except Exception as e: # url2
|
||||||
|
if file.exists():
|
||||||
|
file.unlink() # remove partial downloads
|
||||||
|
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
||||||
|
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
||||||
|
finally:
|
||||||
|
if not file.exists() or file.stat().st_size < min_bytes: # check
|
||||||
|
if file.exists():
|
||||||
|
file.unlink() # remove partial downloads
|
||||||
|
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
||||||
|
LOGGER.info('')
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
|
||||||
|
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
|
||||||
|
from utils.general import LOGGER
|
||||||
|
|
||||||
|
def github_assets(repository, version='latest'):
|
||||||
|
# Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
||||||
|
if version != 'latest':
|
||||||
|
version = f'tags/{version}' # i.e. tags/v7.0
|
||||||
|
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
||||||
|
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
||||||
|
|
||||||
|
file = Path(str(file).strip().replace("'", ''))
|
||||||
|
if not file.exists():
|
||||||
|
# URL specified
|
||||||
|
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
||||||
|
if str(file).startswith(('http:/', 'https:/')): # download
|
||||||
|
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
||||||
|
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
||||||
|
if Path(file).is_file():
|
||||||
|
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
||||||
|
else:
|
||||||
|
safe_download(file=file, url=url, min_bytes=1E5)
|
||||||
|
return file
|
||||||
|
|
||||||
|
# GitHub assets
|
||||||
|
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
||||||
|
try:
|
||||||
|
tag, assets = github_assets(repo, release)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
tag, assets = github_assets(repo) # latest release
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
||||||
|
except Exception:
|
||||||
|
tag = release
|
||||||
|
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
||||||
|
if name in assets:
|
||||||
|
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
||||||
|
safe_download(
|
||||||
|
file,
|
||||||
|
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
||||||
|
min_bytes=1E5,
|
||||||
|
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
||||||
|
|
||||||
|
return str(file)
|
1140
utils/general.py
Normal file
1140
utils/general.py
Normal file
File diff suppressed because it is too large
Load diff
234
utils/loss.py
Normal file
234
utils/loss.py
Normal file
|
@ -0,0 +1,234 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Loss functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from utils.metrics import bbox_iou
|
||||||
|
from utils.torch_utils import de_parallel
|
||||||
|
|
||||||
|
|
||||||
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||||
|
# return positive, negative label smoothing BCE targets
|
||||||
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||||
|
|
||||||
|
|
||||||
|
class BCEBlurWithLogitsLoss(nn.Module):
|
||||||
|
# BCEwithLogitLoss() with reduced missing label effects.
|
||||||
|
def __init__(self, alpha=0.05):
|
||||||
|
super().__init__()
|
||||||
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
pred = torch.sigmoid(pred) # prob from logits
|
||||||
|
dx = pred - true # reduce only missing label effects
|
||||||
|
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||||
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||||
|
loss *= alpha_factor
|
||||||
|
return loss.mean()
|
||||||
|
|
||||||
|
|
||||||
|
class FocalLoss(nn.Module):
|
||||||
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super().__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
# p_t = torch.exp(-loss)
|
||||||
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||||
|
|
||||||
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class QFocalLoss(nn.Module):
|
||||||
|
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super().__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class ComputeLoss:
|
||||||
|
sort_obj_iou = False
|
||||||
|
|
||||||
|
# Compute losses
|
||||||
|
def __init__(self, model, autobalance=False):
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
h = model.hyp # hyperparameters
|
||||||
|
|
||||||
|
# Define criteria
|
||||||
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||||||
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||||
|
|
||||||
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||||
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||||||
|
|
||||||
|
# Focal loss
|
||||||
|
g = h['fl_gamma'] # focal loss gamma
|
||||||
|
if g > 0:
|
||||||
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||||
|
|
||||||
|
m = de_parallel(model).model[-1] # Detect() module
|
||||||
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
||||||
|
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
||||||
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
||||||
|
self.na = m.na # number of anchors
|
||||||
|
self.nc = m.nc # number of classes
|
||||||
|
self.nl = m.nl # number of layers
|
||||||
|
self.anchors = m.anchors
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def __call__(self, p, targets): # predictions, targets
|
||||||
|
lcls = torch.zeros(1, device=self.device) # class loss
|
||||||
|
lbox = torch.zeros(1, device=self.device) # box loss
|
||||||
|
lobj = torch.zeros(1, device=self.device) # object loss
|
||||||
|
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
||||||
|
|
||||||
|
# Losses
|
||||||
|
for i, pi in enumerate(p): # layer index, layer predictions
|
||||||
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
|
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
||||||
|
|
||||||
|
n = b.shape[0] # number of targets
|
||||||
|
if n:
|
||||||
|
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
|
||||||
|
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
|
||||||
|
|
||||||
|
# Regression
|
||||||
|
pxy = pxy.sigmoid() * 2 - 0.5
|
||||||
|
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
||||||
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||||
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
||||||
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
|
# Objectness
|
||||||
|
iou = iou.detach().clamp(0).type(tobj.dtype)
|
||||||
|
if self.sort_obj_iou:
|
||||||
|
j = iou.argsort()
|
||||||
|
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
||||||
|
if self.gr < 1:
|
||||||
|
iou = (1.0 - self.gr) + self.gr * iou
|
||||||
|
tobj[b, a, gj, gi] = iou # iou ratio
|
||||||
|
|
||||||
|
# Classification
|
||||||
|
if self.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
||||||
|
t[range(n), tcls[i]] = self.cp
|
||||||
|
lcls += self.BCEcls(pcls, t) # BCE
|
||||||
|
|
||||||
|
# Append targets to text file
|
||||||
|
# with open('targets.txt', 'a') as file:
|
||||||
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||||
|
|
||||||
|
obji = self.BCEobj(pi[..., 4], tobj)
|
||||||
|
lobj += obji * self.balance[i] # obj loss
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||||
|
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||||||
|
lbox *= self.hyp['box']
|
||||||
|
lobj *= self.hyp['obj']
|
||||||
|
lcls *= self.hyp['cls']
|
||||||
|
bs = tobj.shape[0] # batch size
|
||||||
|
|
||||||
|
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
|
||||||
|
|
||||||
|
def build_targets(self, p, targets):
|
||||||
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||||
|
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||||
|
tcls, tbox, indices, anch = [], [], [], []
|
||||||
|
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
||||||
|
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||||
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
|
||||||
|
|
||||||
|
g = 0.5 # bias
|
||||||
|
off = torch.tensor(
|
||||||
|
[
|
||||||
|
[0, 0],
|
||||||
|
[1, 0],
|
||||||
|
[0, 1],
|
||||||
|
[-1, 0],
|
||||||
|
[0, -1], # j,k,l,m
|
||||||
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||||
|
],
|
||||||
|
device=self.device).float() * g # offsets
|
||||||
|
|
||||||
|
for i in range(self.nl):
|
||||||
|
anchors, shape = self.anchors[i], p[i].shape
|
||||||
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
||||||
|
|
||||||
|
# Match targets to anchors
|
||||||
|
t = targets * gain # shape(3,n,7)
|
||||||
|
if nt:
|
||||||
|
# Matches
|
||||||
|
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
||||||
|
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||||
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||||
|
t = t[j] # filter
|
||||||
|
|
||||||
|
# Offsets
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gxi = gain[[2, 3]] - gxy # inverse
|
||||||
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
||||||
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
||||||
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||||
|
t = t.repeat((5, 1, 1))[j]
|
||||||
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||||
|
else:
|
||||||
|
t = targets[0]
|
||||||
|
offsets = 0
|
||||||
|
|
||||||
|
# Define
|
||||||
|
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
||||||
|
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
|
||||||
|
gij = (gxy - offsets).long()
|
||||||
|
gi, gj = gij.T # grid indices
|
||||||
|
|
||||||
|
# Append
|
||||||
|
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
||||||
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||||
|
anch.append(anchors[a]) # anchors
|
||||||
|
tcls.append(c) # class
|
||||||
|
|
||||||
|
return tcls, tbox, indices, anch
|
360
utils/metrics.py
Normal file
360
utils/metrics.py
Normal file
|
@ -0,0 +1,360 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Model validation metrics
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from utils import TryExcept, threaded
|
||||||
|
|
||||||
|
|
||||||
|
def fitness(x):
|
||||||
|
# Model fitness as a weighted combination of metrics
|
||||||
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||||
|
return (x[:, :4] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
|
def smooth(y, f=0.05):
|
||||||
|
# Box filter of fraction f
|
||||||
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
||||||
|
p = np.ones(nf // 2) # ones padding
|
||||||
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
||||||
|
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
||||||
|
|
||||||
|
|
||||||
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
||||||
|
""" Compute the average precision, given the recall and precision curves.
|
||||||
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||||
|
# Arguments
|
||||||
|
tp: True positives (nparray, nx1 or nx10).
|
||||||
|
conf: Objectness value from 0-1 (nparray).
|
||||||
|
pred_cls: Predicted object classes (nparray).
|
||||||
|
target_cls: True object classes (nparray).
|
||||||
|
plot: Plot precision-recall curve at mAP@0.5
|
||||||
|
save_dir: Plot save directory
|
||||||
|
# Returns
|
||||||
|
The average precision as computed in py-faster-rcnn.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Sort by objectness
|
||||||
|
i = np.argsort(-conf)
|
||||||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||||
|
|
||||||
|
# Find unique classes
|
||||||
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
||||||
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
||||||
|
|
||||||
|
# Create Precision-Recall curve and compute AP for each class
|
||||||
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||||
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
||||||
|
for ci, c in enumerate(unique_classes):
|
||||||
|
i = pred_cls == c
|
||||||
|
n_l = nt[ci] # number of labels
|
||||||
|
n_p = i.sum() # number of predictions
|
||||||
|
if n_p == 0 or n_l == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Accumulate FPs and TPs
|
||||||
|
fpc = (1 - tp[i]).cumsum(0)
|
||||||
|
tpc = tp[i].cumsum(0)
|
||||||
|
|
||||||
|
# Recall
|
||||||
|
recall = tpc / (n_l + eps) # recall curve
|
||||||
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
||||||
|
|
||||||
|
# Precision
|
||||||
|
precision = tpc / (tpc + fpc) # precision curve
|
||||||
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
||||||
|
|
||||||
|
# AP from recall-precision curve
|
||||||
|
for j in range(tp.shape[1]):
|
||||||
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||||
|
if plot and j == 0:
|
||||||
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||||
|
|
||||||
|
# Compute F1 (harmonic mean of precision and recall)
|
||||||
|
f1 = 2 * p * r / (p + r + eps)
|
||||||
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
||||||
|
names = dict(enumerate(names)) # to dict
|
||||||
|
if plot:
|
||||||
|
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
||||||
|
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
||||||
|
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
||||||
|
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
||||||
|
|
||||||
|
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
||||||
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
||||||
|
tp = (r * nt).round() # true positives
|
||||||
|
fp = (tp / (p + eps) - tp).round() # false positives
|
||||||
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_ap(recall, precision):
|
||||||
|
""" Compute the average precision, given the recall and precision curves
|
||||||
|
# Arguments
|
||||||
|
recall: The recall curve (list)
|
||||||
|
precision: The precision curve (list)
|
||||||
|
# Returns
|
||||||
|
Average precision, precision curve, recall curve
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Append sentinel values to beginning and end
|
||||||
|
mrec = np.concatenate(([0.0], recall, [1.0]))
|
||||||
|
mpre = np.concatenate(([1.0], precision, [0.0]))
|
||||||
|
|
||||||
|
# Compute the precision envelope
|
||||||
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||||
|
|
||||||
|
# Integrate area under curve
|
||||||
|
method = 'interp' # methods: 'continuous', 'interp'
|
||||||
|
if method == 'interp':
|
||||||
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||||
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||||
|
else: # 'continuous'
|
||||||
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||||
|
|
||||||
|
return ap, mpre, mrec
|
||||||
|
|
||||||
|
|
||||||
|
class ConfusionMatrix:
|
||||||
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||||
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||||
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.conf = conf
|
||||||
|
self.iou_thres = iou_thres
|
||||||
|
|
||||||
|
def process_batch(self, detections, labels):
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
None, updates confusion matrix accordingly
|
||||||
|
"""
|
||||||
|
if detections is None:
|
||||||
|
gt_classes = labels.int()
|
||||||
|
for gc in gt_classes:
|
||||||
|
self.matrix[self.nc, gc] += 1 # background FN
|
||||||
|
return
|
||||||
|
|
||||||
|
detections = detections[detections[:, 4] > self.conf]
|
||||||
|
gt_classes = labels[:, 0].int()
|
||||||
|
detection_classes = detections[:, 5].int()
|
||||||
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
x = torch.where(iou > self.iou_thres)
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
else:
|
||||||
|
matches = np.zeros((0, 3))
|
||||||
|
|
||||||
|
n = matches.shape[0] > 0
|
||||||
|
m0, m1, _ = matches.transpose().astype(int)
|
||||||
|
for i, gc in enumerate(gt_classes):
|
||||||
|
j = m0 == i
|
||||||
|
if n and sum(j) == 1:
|
||||||
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
||||||
|
else:
|
||||||
|
self.matrix[self.nc, gc] += 1 # true background
|
||||||
|
|
||||||
|
if n:
|
||||||
|
for i, dc in enumerate(detection_classes):
|
||||||
|
if not any(m1 == i):
|
||||||
|
self.matrix[dc, self.nc] += 1 # predicted background
|
||||||
|
|
||||||
|
def tp_fp(self):
|
||||||
|
tp = self.matrix.diagonal() # true positives
|
||||||
|
fp = self.matrix.sum(1) - tp # false positives
|
||||||
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
||||||
|
return tp[:-1], fp[:-1] # remove background class
|
||||||
|
|
||||||
|
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
||||||
|
def plot(self, normalize=True, save_dir='', names=()):
|
||||||
|
import seaborn as sn
|
||||||
|
|
||||||
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
||||||
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
||||||
|
nc, nn = self.nc, len(names) # number of classes, names
|
||||||
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
||||||
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
||||||
|
ticklabels = (names + ['background']) if labels else "auto"
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
||||||
|
sn.heatmap(array,
|
||||||
|
ax=ax,
|
||||||
|
annot=nc < 30,
|
||||||
|
annot_kws={
|
||||||
|
"size": 8},
|
||||||
|
cmap='Blues',
|
||||||
|
fmt='.2f',
|
||||||
|
square=True,
|
||||||
|
vmin=0.0,
|
||||||
|
xticklabels=ticklabels,
|
||||||
|
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
||||||
|
ax.set_ylabel('True')
|
||||||
|
ax.set_ylabel('Predicted')
|
||||||
|
ax.set_title('Confusion Matrix')
|
||||||
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
for i in range(self.nc + 1):
|
||||||
|
print(' '.join(map(str, self.matrix[i])))
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
||||||
|
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
if xywh: # transform from xywh to xyxy
|
||||||
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
||||||
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
||||||
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
||||||
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
||||||
|
else: # x1, y1, x2, y2 = box1
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
||||||
|
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
||||||
|
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
|
||||||
|
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
|
||||||
|
|
||||||
|
# Union Area
|
||||||
|
union = w1 * h1 + w2 * h2 - inter + eps
|
||||||
|
|
||||||
|
# IoU
|
||||||
|
iou = inter / union
|
||||||
|
if CIoU or DIoU or GIoU:
|
||||||
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
||||||
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
||||||
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||||
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||||
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
||||||
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||||
|
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
||||||
|
with torch.no_grad():
|
||||||
|
alpha = v / (v - iou + (1 + eps))
|
||||||
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||||
|
return iou - rho2 / c2 # DIoU
|
||||||
|
c_area = cw * ch + eps # convex area
|
||||||
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||||
|
return iou # IoU
|
||||||
|
|
||||||
|
|
||||||
|
def box_iou(box1, box2, eps=1e-7):
|
||||||
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
box1 (Tensor[N, 4])
|
||||||
|
box2 (Tensor[M, 4])
|
||||||
|
Returns:
|
||||||
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||||
|
IoU values for every element in boxes1 and boxes2
|
||||||
|
"""
|
||||||
|
|
||||||
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||||
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
||||||
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
||||||
|
|
||||||
|
# IoU = inter / (area1 + area2 - inter)
|
||||||
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_ioa(box1, box2, eps=1e-7):
|
||||||
|
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
||||||
|
box1: np.array of shape(4)
|
||||||
|
box2: np.array of shape(nx4)
|
||||||
|
returns: np.array of shape(n)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||||
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||||
|
|
||||||
|
# box2 area
|
||||||
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
||||||
|
|
||||||
|
# Intersection over box2 area
|
||||||
|
return inter_area / box2_area
|
||||||
|
|
||||||
|
|
||||||
|
def wh_iou(wh1, wh2, eps=1e-7):
|
||||||
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||||
|
wh1 = wh1[:, None] # [N,1,2]
|
||||||
|
wh2 = wh2[None] # [1,M,2]
|
||||||
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||||
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
@threaded
|
||||||
|
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
||||||
|
# Precision-recall curve
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
py = np.stack(py, axis=1)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||||
|
for i, y in enumerate(py.T):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||||
|
|
||||||
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||||
|
ax.set_xlabel('Recall')
|
||||||
|
ax.set_ylabel('Precision')
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
ax.set_title('Precision-Recall Curve')
|
||||||
|
fig.savefig(save_dir, dpi=250)
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
|
||||||
|
@threaded
|
||||||
|
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
||||||
|
# Metric-confidence curve
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||||
|
for i, y in enumerate(py):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
||||||
|
|
||||||
|
y = smooth(py.mean(0), 0.05)
|
||||||
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
||||||
|
ax.set_xlabel(xlabel)
|
||||||
|
ax.set_ylabel(ylabel)
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
ax.set_title(f'{ylabel}-Confidence Curve')
|
||||||
|
fig.savefig(save_dir, dpi=250)
|
||||||
|
plt.close(fig)
|
559
utils/plots.py
Normal file
559
utils/plots.py
Normal file
|
@ -0,0 +1,559 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Plotting utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import contextlib
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
from copy import copy
|
||||||
|
from pathlib import Path
|
||||||
|
from urllib.error import URLError
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sn
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
|
from utils import TryExcept, threaded
|
||||||
|
from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path,
|
||||||
|
is_ascii, xywh2xyxy, xyxy2xywh)
|
||||||
|
from utils.metrics import fitness
|
||||||
|
from utils.segment.general import scale_image
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
RANK = int(os.getenv('RANK', -1))
|
||||||
|
matplotlib.rc('font', **{'size': 11})
|
||||||
|
#matplotlib.use('Agg') # for writing to files only
|
||||||
|
|
||||||
|
|
||||||
|
class Colors:
|
||||||
|
# Ultralytics color palette https://ultralytics.com/
|
||||||
|
def __init__(self):
|
||||||
|
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
||||||
|
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
||||||
|
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
||||||
|
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
||||||
|
self.n = len(self.palette)
|
||||||
|
|
||||||
|
def __call__(self, i, bgr=False):
|
||||||
|
c = self.palette[int(i) % self.n]
|
||||||
|
return (c[2], c[1], c[0]) if bgr else c
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hex2rgb(h): # rgb order (PIL)
|
||||||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||||
|
|
||||||
|
|
||||||
|
colors = Colors() # create instance for 'from utils.plots import colors'
|
||||||
|
|
||||||
|
|
||||||
|
def check_pil_font(font=FONT, size=10):
|
||||||
|
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
|
||||||
|
font = Path(font)
|
||||||
|
font = font if font.exists() else (CONFIG_DIR / font.name)
|
||||||
|
try:
|
||||||
|
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
||||||
|
except Exception: # download if missing
|
||||||
|
try:
|
||||||
|
check_font(font)
|
||||||
|
return ImageFont.truetype(str(font), size)
|
||||||
|
except TypeError:
|
||||||
|
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
|
||||||
|
except URLError: # not online
|
||||||
|
return ImageFont.load_default()
|
||||||
|
|
||||||
|
|
||||||
|
class Annotator:
|
||||||
|
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
||||||
|
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||||||
|
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
||||||
|
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
||||||
|
self.pil = pil or non_ascii
|
||||||
|
if self.pil: # use PIL
|
||||||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||||||
|
self.draw = ImageDraw.Draw(self.im)
|
||||||
|
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
|
||||||
|
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
||||||
|
else: # use cv2
|
||||||
|
self.im = im
|
||||||
|
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
||||||
|
|
||||||
|
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
||||||
|
# Add one xyxy box to image with label
|
||||||
|
if self.pil or not is_ascii(label):
|
||||||
|
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
||||||
|
if label:
|
||||||
|
w, h = self.font.getsize(label) # text width, height
|
||||||
|
outside = box[1] - h >= 0 # label fits outside box
|
||||||
|
self.draw.rectangle(
|
||||||
|
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
||||||
|
box[1] + 1 if outside else box[1] + h + 1),
|
||||||
|
fill=color,
|
||||||
|
)
|
||||||
|
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
||||||
|
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
||||||
|
else: # cv2
|
||||||
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
||||||
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
||||||
|
if label:
|
||||||
|
tf = max(self.lw - 1, 1) # font thickness
|
||||||
|
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
||||||
|
outside = p1[1] - h >= 3
|
||||||
|
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
||||||
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
||||||
|
cv2.putText(self.im,
|
||||||
|
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
||||||
|
0,
|
||||||
|
self.lw / 3,
|
||||||
|
txt_color,
|
||||||
|
thickness=tf,
|
||||||
|
lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
||||||
|
"""Plot masks at once.
|
||||||
|
Args:
|
||||||
|
masks (tensor): predicted masks on cuda, shape: [n, h, w]
|
||||||
|
colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
|
||||||
|
im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
|
||||||
|
alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
|
||||||
|
"""
|
||||||
|
if self.pil:
|
||||||
|
# convert to numpy first
|
||||||
|
self.im = np.asarray(self.im).copy()
|
||||||
|
if len(masks) == 0:
|
||||||
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
||||||
|
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
||||||
|
colors = colors[:, None, None] # shape(n,1,1,3)
|
||||||
|
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
||||||
|
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
||||||
|
|
||||||
|
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
||||||
|
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
||||||
|
|
||||||
|
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||||||
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||||||
|
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
||||||
|
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
||||||
|
self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
|
||||||
|
if self.pil:
|
||||||
|
# convert im back to PIL and update draw
|
||||||
|
self.fromarray(self.im)
|
||||||
|
|
||||||
|
def rectangle(self, xy, fill=None, outline=None, width=1):
|
||||||
|
# Add rectangle to image (PIL-only)
|
||||||
|
self.draw.rectangle(xy, fill, outline, width)
|
||||||
|
|
||||||
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
|
||||||
|
# Add text to image (PIL-only)
|
||||||
|
if anchor == 'bottom': # start y from font bottom
|
||||||
|
w, h = self.font.getsize(text) # text width, height
|
||||||
|
xy[1] += 1 - h
|
||||||
|
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
||||||
|
|
||||||
|
def fromarray(self, im):
|
||||||
|
# Update self.im from a numpy array
|
||||||
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
||||||
|
self.draw = ImageDraw.Draw(self.im)
|
||||||
|
|
||||||
|
def result(self):
|
||||||
|
# Return annotated image as array
|
||||||
|
return np.asarray(self.im)
|
||||||
|
|
||||||
|
|
||||||
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
||||||
|
"""
|
||||||
|
x: Features to be visualized
|
||||||
|
module_type: Module type
|
||||||
|
stage: Module stage within model
|
||||||
|
n: Maximum number of feature maps to plot
|
||||||
|
save_dir: Directory to save results
|
||||||
|
"""
|
||||||
|
if 'Detect' not in module_type:
|
||||||
|
batch, channels, height, width = x.shape # batch, channels, height, width
|
||||||
|
if height > 1 and width > 1:
|
||||||
|
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
||||||
|
|
||||||
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
||||||
|
n = min(n, channels) # number of plots
|
||||||
|
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
||||||
|
ax = ax.ravel()
|
||||||
|
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||||
|
for i in range(n):
|
||||||
|
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
||||||
|
ax[i].axis('off')
|
||||||
|
|
||||||
|
LOGGER.info(f'Saving {f}... ({n}/{channels})')
|
||||||
|
plt.savefig(f, dpi=300, bbox_inches='tight')
|
||||||
|
plt.close()
|
||||||
|
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|
||||||
|
|
||||||
|
|
||||||
|
def hist2d(x, y, n=100):
|
||||||
|
# 2d histogram used in labels.png and evolve.png
|
||||||
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||||
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||||
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||||
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||||
|
return np.log(hist[xidx, yidx])
|
||||||
|
|
||||||
|
|
||||||
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||||
|
from scipy.signal import butter, filtfilt
|
||||||
|
|
||||||
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||||
|
def butter_lowpass(cutoff, fs, order):
|
||||||
|
nyq = 0.5 * fs
|
||||||
|
normal_cutoff = cutoff / nyq
|
||||||
|
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||||
|
|
||||||
|
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||||
|
return filtfilt(b, a, data) # forward-backward filter
|
||||||
|
|
||||||
|
|
||||||
|
def output_to_target(output, max_det=300):
|
||||||
|
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
|
||||||
|
targets = []
|
||||||
|
for i, o in enumerate(output):
|
||||||
|
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
||||||
|
j = torch.full((conf.shape[0], 1), i)
|
||||||
|
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
|
||||||
|
return torch.cat(targets, 0).numpy()
|
||||||
|
|
||||||
|
|
||||||
|
@threaded
|
||||||
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
|
||||||
|
# Plot image grid with labels
|
||||||
|
if isinstance(images, torch.Tensor):
|
||||||
|
images = images.cpu().float().numpy()
|
||||||
|
if isinstance(targets, torch.Tensor):
|
||||||
|
targets = targets.cpu().numpy()
|
||||||
|
|
||||||
|
max_size = 1920 # max image size
|
||||||
|
max_subplots = 16 # max image subplots, i.e. 4x4
|
||||||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||||||
|
bs = min(bs, max_subplots) # limit plot images
|
||||||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||||
|
if np.max(images[0]) <= 1:
|
||||||
|
images *= 255 # de-normalise (optional)
|
||||||
|
|
||||||
|
# Build Image
|
||||||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||||
|
for i, im in enumerate(images):
|
||||||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||||||
|
break
|
||||||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||||
|
im = im.transpose(1, 2, 0)
|
||||||
|
mosaic[y:y + h, x:x + w, :] = im
|
||||||
|
|
||||||
|
# Resize (optional)
|
||||||
|
scale = max_size / ns / max(h, w)
|
||||||
|
if scale < 1:
|
||||||
|
h = math.ceil(scale * h)
|
||||||
|
w = math.ceil(scale * w)
|
||||||
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
||||||
|
|
||||||
|
# Annotate
|
||||||
|
fs = int((h + w) * ns * 0.01) # font size
|
||||||
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
||||||
|
for i in range(i + 1):
|
||||||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||||
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
||||||
|
if paths:
|
||||||
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||||
|
if len(targets) > 0:
|
||||||
|
ti = targets[targets[:, 0] == i] # image targets
|
||||||
|
boxes = xywh2xyxy(ti[:, 2:6]).T
|
||||||
|
classes = ti[:, 1].astype('int')
|
||||||
|
labels = ti.shape[1] == 6 # labels if no conf column
|
||||||
|
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
||||||
|
|
||||||
|
if boxes.shape[1]:
|
||||||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
|
boxes[[1, 3]] *= h
|
||||||
|
elif scale < 1: # absolute coords need scale if image scales
|
||||||
|
boxes *= scale
|
||||||
|
boxes[[0, 2]] += x
|
||||||
|
boxes[[1, 3]] += y
|
||||||
|
for j, box in enumerate(boxes.T.tolist()):
|
||||||
|
cls = classes[j]
|
||||||
|
color = colors(cls)
|
||||||
|
cls = names[cls] if names else cls
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
||||||
|
annotator.box_label(box, label, color=color)
|
||||||
|
annotator.im.save(fname) # save
|
||||||
|
|
||||||
|
|
||||||
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||||
|
# Plot LR simulating training for full epochs
|
||||||
|
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||||
|
y = []
|
||||||
|
for _ in range(epochs):
|
||||||
|
scheduler.step()
|
||||||
|
y.append(optimizer.param_groups[0]['lr'])
|
||||||
|
plt.plot(y, '.-', label='LR')
|
||||||
|
plt.xlabel('epoch')
|
||||||
|
plt.ylabel('LR')
|
||||||
|
plt.grid()
|
||||||
|
plt.xlim(0, epochs)
|
||||||
|
plt.ylim(0)
|
||||||
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_val_txt(): # from utils.plots import *; plot_val()
|
||||||
|
# Plot val.txt histograms
|
||||||
|
x = np.loadtxt('val.txt', dtype=np.float32)
|
||||||
|
box = xyxy2xywh(x[:, :4])
|
||||||
|
cx, cy = box[:, 0], box[:, 1]
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||||
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||||
|
ax.set_aspect('equal')
|
||||||
|
plt.savefig('hist2d.png', dpi=300)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax[0].hist(cx, bins=600)
|
||||||
|
ax[1].hist(cy, bins=600)
|
||||||
|
plt.savefig('hist1d.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||||
|
# Plot targets.txt histograms
|
||||||
|
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||||
|
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||||
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(4):
|
||||||
|
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
plt.savefig('targets.jpg', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
|
||||||
|
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
|
||||||
|
save_dir = Path(file).parent if file else Path(dir)
|
||||||
|
plot2 = False # plot additional results
|
||||||
|
if plot2:
|
||||||
|
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
|
||||||
|
|
||||||
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||||
|
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
|
||||||
|
for f in sorted(save_dir.glob('study*.txt')):
|
||||||
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||||
|
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||||
|
if plot2:
|
||||||
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
|
||||||
|
for i in range(7):
|
||||||
|
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
|
||||||
|
j = y[3].argmax() + 1
|
||||||
|
ax2.plot(y[5, 1:j],
|
||||||
|
y[3, 1:j] * 1E2,
|
||||||
|
'.-',
|
||||||
|
linewidth=2,
|
||||||
|
markersize=8,
|
||||||
|
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||||
|
|
||||||
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||||
|
'k.-',
|
||||||
|
linewidth=2,
|
||||||
|
markersize=8,
|
||||||
|
alpha=.25,
|
||||||
|
label='EfficientDet')
|
||||||
|
|
||||||
|
ax2.grid(alpha=0.2)
|
||||||
|
ax2.set_yticks(np.arange(20, 60, 5))
|
||||||
|
ax2.set_xlim(0, 57)
|
||||||
|
ax2.set_ylim(25, 55)
|
||||||
|
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||||
|
ax2.set_ylabel('COCO AP val')
|
||||||
|
ax2.legend(loc='lower right')
|
||||||
|
f = save_dir / 'study.png'
|
||||||
|
print(f'Saving {f}...')
|
||||||
|
plt.savefig(f, dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
|
||||||
|
def plot_labels(labels, names=(), save_dir=Path('')):
|
||||||
|
# plot dataset labels
|
||||||
|
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
||||||
|
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||||
|
nc = int(c.max() + 1) # number of classes
|
||||||
|
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||||
|
|
||||||
|
# seaborn correlogram
|
||||||
|
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||||
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# matplotlib labels
|
||||||
|
matplotlib.use('svg') # faster
|
||||||
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||||
|
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||||
|
with contextlib.suppress(Exception): # color histogram bars by class
|
||||||
|
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
|
||||||
|
ax[0].set_ylabel('instances')
|
||||||
|
if 0 < len(names) < 30:
|
||||||
|
ax[0].set_xticks(range(len(names)))
|
||||||
|
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
|
||||||
|
else:
|
||||||
|
ax[0].set_xlabel('classes')
|
||||||
|
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||||
|
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||||
|
|
||||||
|
# rectangles
|
||||||
|
labels[:, 1:3] = 0.5 # center
|
||||||
|
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||||
|
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||||
|
for cls, *box in labels[:1000]:
|
||||||
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
||||||
|
ax[1].imshow(img)
|
||||||
|
ax[1].axis('off')
|
||||||
|
|
||||||
|
for a in [0, 1, 2, 3]:
|
||||||
|
for s in ['top', 'right', 'left', 'bottom']:
|
||||||
|
ax[a].spines[s].set_visible(False)
|
||||||
|
|
||||||
|
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||||
|
matplotlib.use('Agg')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
|
||||||
|
# Show classification image grid with labels (optional) and predictions (optional)
|
||||||
|
from utils.augmentations import denormalize
|
||||||
|
|
||||||
|
names = names or [f'class{i}' for i in range(1000)]
|
||||||
|
blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
|
||||||
|
dim=0) # select batch index 0, block by channels
|
||||||
|
n = min(len(blocks), nmax) # number of plots
|
||||||
|
m = min(8, round(n ** 0.5)) # 8 x 8 default
|
||||||
|
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
|
||||||
|
ax = ax.ravel() if m > 1 else [ax]
|
||||||
|
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||||
|
for i in range(n):
|
||||||
|
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
|
||||||
|
ax[i].axis('off')
|
||||||
|
if labels is not None:
|
||||||
|
s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
|
||||||
|
ax[i].set_title(s, fontsize=8, verticalalignment='top')
|
||||||
|
plt.savefig(f, dpi=300, bbox_inches='tight')
|
||||||
|
plt.close()
|
||||||
|
if verbose:
|
||||||
|
LOGGER.info(f"Saving {f}")
|
||||||
|
if labels is not None:
|
||||||
|
LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
|
||||||
|
if pred is not None:
|
||||||
|
LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
|
||||||
|
return f
|
||||||
|
|
||||||
|
|
||||||
|
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
|
||||||
|
# Plot evolve.csv hyp evolution results
|
||||||
|
evolve_csv = Path(evolve_csv)
|
||||||
|
data = pd.read_csv(evolve_csv)
|
||||||
|
keys = [x.strip() for x in data.columns]
|
||||||
|
x = data.values
|
||||||
|
f = fitness(x)
|
||||||
|
j = np.argmax(f) # max fitness index
|
||||||
|
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||||
|
matplotlib.rc('font', **{'size': 8})
|
||||||
|
print(f'Best results from row {j} of {evolve_csv}:')
|
||||||
|
for i, k in enumerate(keys[7:]):
|
||||||
|
v = x[:, 7 + i]
|
||||||
|
mu = v[j] # best single result
|
||||||
|
plt.subplot(6, 5, i + 1)
|
||||||
|
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||||
|
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||||
|
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
|
||||||
|
if i % 5 != 0:
|
||||||
|
plt.yticks([])
|
||||||
|
print(f'{k:>15}: {mu:.3g}')
|
||||||
|
f = evolve_csv.with_suffix('.png') # filename
|
||||||
|
plt.savefig(f, dpi=200)
|
||||||
|
plt.close()
|
||||||
|
print(f'Saved {f}')
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results(file='path/to/results.csv', dir=''):
|
||||||
|
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||||
|
save_dir = Path(file).parent if file else Path(dir)
|
||||||
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
files = list(save_dir.glob('results*.csv'))
|
||||||
|
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
||||||
|
for f in files:
|
||||||
|
try:
|
||||||
|
data = pd.read_csv(f)
|
||||||
|
s = [x.strip() for x in data.columns]
|
||||||
|
x = data.values[:, 0]
|
||||||
|
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
||||||
|
y = data.values[:, j].astype('float')
|
||||||
|
# y[y == 0] = np.nan # don't show zero values
|
||||||
|
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[j], fontsize=12)
|
||||||
|
# if j in [8, 9, 10]: # share train and val loss y axes
|
||||||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.info(f'Warning: Plotting error for {f}: {e}')
|
||||||
|
ax[1].legend()
|
||||||
|
fig.savefig(save_dir / 'results.png', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||||
|
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||||
|
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||||
|
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||||
|
files = list(Path(save_dir).glob('frames*.txt'))
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = np.arange(start, min(stop, n) if stop else n)
|
||||||
|
results = results[:, x]
|
||||||
|
t = (results[0] - results[0].min()) # set t0=0s
|
||||||
|
results[0] = x
|
||||||
|
for i, a in enumerate(ax):
|
||||||
|
if i < len(results):
|
||||||
|
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||||
|
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||||
|
a.set_title(s[i])
|
||||||
|
a.set_xlabel('time (s)')
|
||||||
|
# if fi == len(files) - 1:
|
||||||
|
# a.set_ylim(bottom=0)
|
||||||
|
for side in ['top', 'right']:
|
||||||
|
a.spines[side].set_visible(False)
|
||||||
|
else:
|
||||||
|
a.remove()
|
||||||
|
except Exception as e:
|
||||||
|
print(f'Warning: Plotting error for {f}; {e}')
|
||||||
|
ax[1].legend()
|
||||||
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
||||||
|
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
||||||
|
xyxy = torch.tensor(xyxy).view(-1, 4)
|
||||||
|
b = xyxy2xywh(xyxy) # boxes
|
||||||
|
if square:
|
||||||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
||||||
|
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
||||||
|
xyxy = xywh2xyxy(b).long()
|
||||||
|
clip_boxes(xyxy, im.shape)
|
||||||
|
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
||||||
|
if save:
|
||||||
|
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
||||||
|
f = str(increment_path(file).with_suffix('.jpg'))
|
||||||
|
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
||||||
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
|
||||||
|
return crop
|
0
utils/segment/__init__.py
Normal file
0
utils/segment/__init__.py
Normal file
104
utils/segment/augmentations.py
Normal file
104
utils/segment/augmentations.py
Normal file
|
@ -0,0 +1,104 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Image augmentation functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import random
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from ..augmentations import box_candidates
|
||||||
|
from ..general import resample_segments, segment2box
|
||||||
|
|
||||||
|
|
||||||
|
def mixup(im, labels, segments, im2, labels2, segments2):
|
||||||
|
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
||||||
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
||||||
|
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
||||||
|
labels = np.concatenate((labels, labels2), 0)
|
||||||
|
segments = np.concatenate((segments, segments2), 0)
|
||||||
|
return im, labels, segments
|
||||||
|
|
||||||
|
|
||||||
|
def random_perspective(im,
|
||||||
|
targets=(),
|
||||||
|
segments=(),
|
||||||
|
degrees=10,
|
||||||
|
translate=.1,
|
||||||
|
scale=.1,
|
||||||
|
shear=10,
|
||||||
|
perspective=0.0,
|
||||||
|
border=(0, 0)):
|
||||||
|
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||||
|
# targets = [cls, xyxy]
|
||||||
|
|
||||||
|
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||||
|
width = im.shape[1] + border[1] * 2
|
||||||
|
|
||||||
|
# Center
|
||||||
|
C = np.eye(3)
|
||||||
|
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
||||||
|
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
||||||
|
|
||||||
|
# Perspective
|
||||||
|
P = np.eye(3)
|
||||||
|
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||||
|
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||||
|
|
||||||
|
# Rotation and Scale
|
||||||
|
R = np.eye(3)
|
||||||
|
a = random.uniform(-degrees, degrees)
|
||||||
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||||
|
s = random.uniform(1 - scale, 1 + scale)
|
||||||
|
# s = 2 ** random.uniform(-scale, scale)
|
||||||
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||||
|
|
||||||
|
# Shear
|
||||||
|
S = np.eye(3)
|
||||||
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||||
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||||
|
|
||||||
|
# Translation
|
||||||
|
T = np.eye(3)
|
||||||
|
T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels)
|
||||||
|
T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels)
|
||||||
|
|
||||||
|
# Combined rotation matrix
|
||||||
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||||
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||||
|
if perspective:
|
||||||
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
else: # affine
|
||||||
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||||
|
|
||||||
|
# Visualize
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||||
|
# ax[0].imshow(im[:, :, ::-1]) # base
|
||||||
|
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
||||||
|
|
||||||
|
# Transform label coordinates
|
||||||
|
n = len(targets)
|
||||||
|
new_segments = []
|
||||||
|
if n:
|
||||||
|
new = np.zeros((n, 4))
|
||||||
|
segments = resample_segments(segments) # upsample
|
||||||
|
for i, segment in enumerate(segments):
|
||||||
|
xy = np.ones((len(segment), 3))
|
||||||
|
xy[:, :2] = segment
|
||||||
|
xy = xy @ M.T # transform
|
||||||
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
||||||
|
|
||||||
|
# clip
|
||||||
|
new[i] = segment2box(xy, width, height)
|
||||||
|
new_segments.append(xy)
|
||||||
|
|
||||||
|
# filter candidates
|
||||||
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
|
||||||
|
targets = targets[i]
|
||||||
|
targets[:, 1:5] = new[i]
|
||||||
|
new_segments = np.array(new_segments)[i]
|
||||||
|
|
||||||
|
return im, targets, new_segments
|
331
utils/segment/dataloaders.py
Normal file
331
utils/segment/dataloaders.py
Normal file
|
@ -0,0 +1,331 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Dataloaders
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader, distributed
|
||||||
|
|
||||||
|
from ..augmentations import augment_hsv, copy_paste, letterbox
|
||||||
|
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker
|
||||||
|
from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
|
||||||
|
from ..torch_utils import torch_distributed_zero_first
|
||||||
|
from .augmentations import mixup, random_perspective
|
||||||
|
|
||||||
|
RANK = int(os.getenv('RANK', -1))
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataloader(path,
|
||||||
|
imgsz,
|
||||||
|
batch_size,
|
||||||
|
stride,
|
||||||
|
single_cls=False,
|
||||||
|
hyp=None,
|
||||||
|
augment=False,
|
||||||
|
cache=False,
|
||||||
|
pad=0.0,
|
||||||
|
rect=False,
|
||||||
|
rank=-1,
|
||||||
|
workers=8,
|
||||||
|
image_weights=False,
|
||||||
|
quad=False,
|
||||||
|
prefix='',
|
||||||
|
shuffle=False,
|
||||||
|
mask_downsample_ratio=1,
|
||||||
|
overlap_mask=False):
|
||||||
|
if rect and shuffle:
|
||||||
|
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
||||||
|
shuffle = False
|
||||||
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||||
|
dataset = LoadImagesAndLabelsAndMasks(
|
||||||
|
path,
|
||||||
|
imgsz,
|
||||||
|
batch_size,
|
||||||
|
augment=augment, # augmentation
|
||||||
|
hyp=hyp, # hyperparameters
|
||||||
|
rect=rect, # rectangular batches
|
||||||
|
cache_images=cache,
|
||||||
|
single_cls=single_cls,
|
||||||
|
stride=int(stride),
|
||||||
|
pad=pad,
|
||||||
|
image_weights=image_weights,
|
||||||
|
prefix=prefix,
|
||||||
|
downsample_ratio=mask_downsample_ratio,
|
||||||
|
overlap=overlap_mask)
|
||||||
|
|
||||||
|
batch_size = min(batch_size, len(dataset))
|
||||||
|
nd = torch.cuda.device_count() # number of CUDA devices
|
||||||
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
||||||
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
||||||
|
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
||||||
|
generator = torch.Generator()
|
||||||
|
generator.manual_seed(6148914691236517205 + RANK)
|
||||||
|
return loader(
|
||||||
|
dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=shuffle and sampler is None,
|
||||||
|
num_workers=nw,
|
||||||
|
sampler=sampler,
|
||||||
|
pin_memory=True,
|
||||||
|
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
|
||||||
|
worker_init_fn=seed_worker,
|
||||||
|
generator=generator,
|
||||||
|
), dataset
|
||||||
|
|
||||||
|
|
||||||
|
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
path,
|
||||||
|
img_size=640,
|
||||||
|
batch_size=16,
|
||||||
|
augment=False,
|
||||||
|
hyp=None,
|
||||||
|
rect=False,
|
||||||
|
image_weights=False,
|
||||||
|
cache_images=False,
|
||||||
|
single_cls=False,
|
||||||
|
stride=32,
|
||||||
|
pad=0,
|
||||||
|
min_items=0,
|
||||||
|
prefix="",
|
||||||
|
downsample_ratio=1,
|
||||||
|
overlap=False,
|
||||||
|
):
|
||||||
|
super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
|
||||||
|
stride, pad, min_items, prefix)
|
||||||
|
self.downsample_ratio = downsample_ratio
|
||||||
|
self.overlap = overlap
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
index = self.indices[index] # linear, shuffled, or image_weights
|
||||||
|
|
||||||
|
hyp = self.hyp
|
||||||
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
||||||
|
masks = []
|
||||||
|
if mosaic:
|
||||||
|
# Load mosaic
|
||||||
|
img, labels, segments = self.load_mosaic(index)
|
||||||
|
shapes = None
|
||||||
|
|
||||||
|
# MixUp augmentation
|
||||||
|
if random.random() < hyp["mixup"]:
|
||||||
|
img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
|
||||||
|
|
||||||
|
else:
|
||||||
|
# Load image
|
||||||
|
img, (h0, w0), (h, w) = self.load_image(index)
|
||||||
|
|
||||||
|
# Letterbox
|
||||||
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||||||
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||||||
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||||||
|
|
||||||
|
labels = self.labels[index].copy()
|
||||||
|
# [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
|
||||||
|
segments = self.segments[index].copy()
|
||||||
|
if len(segments):
|
||||||
|
for i_s in range(len(segments)):
|
||||||
|
segments[i_s] = xyn2xy(
|
||||||
|
segments[i_s],
|
||||||
|
ratio[0] * w,
|
||||||
|
ratio[1] * h,
|
||||||
|
padw=pad[0],
|
||||||
|
padh=pad[1],
|
||||||
|
)
|
||||||
|
if labels.size: # normalized xywh to pixel xyxy format
|
||||||
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
||||||
|
|
||||||
|
if self.augment:
|
||||||
|
img, labels, segments = random_perspective(img,
|
||||||
|
labels,
|
||||||
|
segments=segments,
|
||||||
|
degrees=hyp["degrees"],
|
||||||
|
translate=hyp["translate"],
|
||||||
|
scale=hyp["scale"],
|
||||||
|
shear=hyp["shear"],
|
||||||
|
perspective=hyp["perspective"])
|
||||||
|
|
||||||
|
nl = len(labels) # number of labels
|
||||||
|
if nl:
|
||||||
|
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
|
||||||
|
if self.overlap:
|
||||||
|
masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
|
||||||
|
segments,
|
||||||
|
downsample_ratio=self.downsample_ratio)
|
||||||
|
masks = masks[None] # (640, 640) -> (1, 640, 640)
|
||||||
|
labels = labels[sorted_idx]
|
||||||
|
else:
|
||||||
|
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
|
||||||
|
|
||||||
|
masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
|
||||||
|
self.downsample_ratio, img.shape[1] //
|
||||||
|
self.downsample_ratio))
|
||||||
|
# TODO: albumentations support
|
||||||
|
if self.augment:
|
||||||
|
# Albumentations
|
||||||
|
# there are some augmentation that won't change boxes and masks,
|
||||||
|
# so just be it for now.
|
||||||
|
img, labels = self.albumentations(img, labels)
|
||||||
|
nl = len(labels) # update after albumentations
|
||||||
|
|
||||||
|
# HSV color-space
|
||||||
|
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
|
||||||
|
|
||||||
|
# Flip up-down
|
||||||
|
if random.random() < hyp["flipud"]:
|
||||||
|
img = np.flipud(img)
|
||||||
|
if nl:
|
||||||
|
labels[:, 2] = 1 - labels[:, 2]
|
||||||
|
masks = torch.flip(masks, dims=[1])
|
||||||
|
|
||||||
|
# Flip left-right
|
||||||
|
if random.random() < hyp["fliplr"]:
|
||||||
|
img = np.fliplr(img)
|
||||||
|
if nl:
|
||||||
|
labels[:, 1] = 1 - labels[:, 1]
|
||||||
|
masks = torch.flip(masks, dims=[2])
|
||||||
|
|
||||||
|
# Cutouts # labels = cutout(img, labels, p=0.5)
|
||||||
|
|
||||||
|
labels_out = torch.zeros((nl, 6))
|
||||||
|
if nl:
|
||||||
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||||
|
img = np.ascontiguousarray(img)
|
||||||
|
|
||||||
|
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
|
||||||
|
|
||||||
|
def load_mosaic(self, index):
|
||||||
|
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
||||||
|
labels4, segments4 = [], []
|
||||||
|
s = self.img_size
|
||||||
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
||||||
|
|
||||||
|
# 3 additional image indices
|
||||||
|
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
||||||
|
for i, index in enumerate(indices):
|
||||||
|
# Load image
|
||||||
|
img, _, (h, w) = self.load_image(index)
|
||||||
|
|
||||||
|
# place img in img4
|
||||||
|
if i == 0: # top left
|
||||||
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||||||
|
elif i == 1: # top right
|
||||||
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||||||
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||||||
|
elif i == 2: # bottom left
|
||||||
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
||||||
|
elif i == 3: # bottom right
|
||||||
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||||||
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||||||
|
|
||||||
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||||
|
padw = x1a - x1b
|
||||||
|
padh = y1a - y1b
|
||||||
|
|
||||||
|
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
||||||
|
|
||||||
|
if labels.size:
|
||||||
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
||||||
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
||||||
|
labels4.append(labels)
|
||||||
|
segments4.extend(segments)
|
||||||
|
|
||||||
|
# Concat/clip labels
|
||||||
|
labels4 = np.concatenate(labels4, 0)
|
||||||
|
for x in (labels4[:, 1:], *segments4):
|
||||||
|
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
||||||
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
||||||
|
|
||||||
|
# Augment
|
||||||
|
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
|
||||||
|
img4, labels4, segments4 = random_perspective(img4,
|
||||||
|
labels4,
|
||||||
|
segments4,
|
||||||
|
degrees=self.hyp["degrees"],
|
||||||
|
translate=self.hyp["translate"],
|
||||||
|
scale=self.hyp["scale"],
|
||||||
|
shear=self.hyp["shear"],
|
||||||
|
perspective=self.hyp["perspective"],
|
||||||
|
border=self.mosaic_border) # border to remove
|
||||||
|
return img4, labels4, segments4
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def collate_fn(batch):
|
||||||
|
img, label, path, shapes, masks = zip(*batch) # transposed
|
||||||
|
batched_masks = torch.cat(masks, 0)
|
||||||
|
for i, l in enumerate(label):
|
||||||
|
l[:, 0] = i # add target image index for build_targets()
|
||||||
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
|
||||||
|
|
||||||
|
|
||||||
|
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (tuple): The image size.
|
||||||
|
polygons (np.ndarray): [N, M], N is the number of polygons,
|
||||||
|
M is the number of points(Be divided by 2).
|
||||||
|
"""
|
||||||
|
mask = np.zeros(img_size, dtype=np.uint8)
|
||||||
|
polygons = np.asarray(polygons)
|
||||||
|
polygons = polygons.astype(np.int32)
|
||||||
|
shape = polygons.shape
|
||||||
|
polygons = polygons.reshape(shape[0], -1, 2)
|
||||||
|
cv2.fillPoly(mask, polygons, color=color)
|
||||||
|
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
|
||||||
|
# NOTE: fillPoly firstly then resize is trying the keep the same way
|
||||||
|
# of loss calculation when mask-ratio=1.
|
||||||
|
mask = cv2.resize(mask, (nw, nh))
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def polygons2masks(img_size, polygons, color, downsample_ratio=1):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (tuple): The image size.
|
||||||
|
polygons (list[np.ndarray]): each polygon is [N, M],
|
||||||
|
N is the number of polygons,
|
||||||
|
M is the number of points(Be divided by 2).
|
||||||
|
"""
|
||||||
|
masks = []
|
||||||
|
for si in range(len(polygons)):
|
||||||
|
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
|
||||||
|
masks.append(mask)
|
||||||
|
return np.array(masks)
|
||||||
|
|
||||||
|
|
||||||
|
def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
|
||||||
|
"""Return a (640, 640) overlap mask."""
|
||||||
|
masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
|
||||||
|
dtype=np.int32 if len(segments) > 255 else np.uint8)
|
||||||
|
areas = []
|
||||||
|
ms = []
|
||||||
|
for si in range(len(segments)):
|
||||||
|
mask = polygon2mask(
|
||||||
|
img_size,
|
||||||
|
[segments[si].reshape(-1)],
|
||||||
|
downsample_ratio=downsample_ratio,
|
||||||
|
color=1,
|
||||||
|
)
|
||||||
|
ms.append(mask)
|
||||||
|
areas.append(mask.sum())
|
||||||
|
areas = np.asarray(areas)
|
||||||
|
index = np.argsort(-areas)
|
||||||
|
ms = np.array(ms)[index]
|
||||||
|
for i in range(len(segments)):
|
||||||
|
mask = ms[i] * (i + 1)
|
||||||
|
masks = masks + mask
|
||||||
|
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
||||||
|
return masks, index
|
160
utils/segment/general.py
Normal file
160
utils/segment/general.py
Normal file
|
@ -0,0 +1,160 @@
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
def crop_mask(masks, boxes):
|
||||||
|
"""
|
||||||
|
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
|
||||||
|
Vectorized by Chong (thanks Chong).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- masks should be a size [h, w, n] tensor of masks
|
||||||
|
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
||||||
|
"""
|
||||||
|
|
||||||
|
n, h, w = masks.shape
|
||||||
|
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
||||||
|
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
||||||
|
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
||||||
|
|
||||||
|
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
||||||
|
|
||||||
|
|
||||||
|
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
||||||
|
"""
|
||||||
|
Crop after upsample.
|
||||||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||||||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||||||
|
bboxes: [n, 4], n is number of masks after nms
|
||||||
|
shape:input_image_size, (h, w)
|
||||||
|
|
||||||
|
return: h, w, n
|
||||||
|
"""
|
||||||
|
|
||||||
|
c, mh, mw = protos.shape # CHW
|
||||||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||||
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||||
|
masks = crop_mask(masks, bboxes) # CHW
|
||||||
|
return masks.gt_(0.5)
|
||||||
|
|
||||||
|
|
||||||
|
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
||||||
|
"""
|
||||||
|
Crop before upsample.
|
||||||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||||||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||||||
|
bboxes: [n, 4], n is number of masks after nms
|
||||||
|
shape:input_image_size, (h, w)
|
||||||
|
|
||||||
|
return: h, w, n
|
||||||
|
"""
|
||||||
|
|
||||||
|
c, mh, mw = protos.shape # CHW
|
||||||
|
ih, iw = shape
|
||||||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
||||||
|
|
||||||
|
downsampled_bboxes = bboxes.clone()
|
||||||
|
downsampled_bboxes[:, 0] *= mw / iw
|
||||||
|
downsampled_bboxes[:, 2] *= mw / iw
|
||||||
|
downsampled_bboxes[:, 3] *= mh / ih
|
||||||
|
downsampled_bboxes[:, 1] *= mh / ih
|
||||||
|
|
||||||
|
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
||||||
|
if upsample:
|
||||||
|
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||||
|
return masks.gt_(0.5)
|
||||||
|
|
||||||
|
|
||||||
|
def process_mask_native(protos, masks_in, bboxes, dst_shape):
|
||||||
|
"""
|
||||||
|
Crop after upsample.
|
||||||
|
proto_out: [mask_dim, mask_h, mask_w]
|
||||||
|
out_masks: [n, mask_dim], n is number of masks after nms
|
||||||
|
bboxes: [n, 4], n is number of masks after nms
|
||||||
|
shape:input_image_size, (h, w)
|
||||||
|
|
||||||
|
return: h, w, n
|
||||||
|
"""
|
||||||
|
c, mh, mw = protos.shape # CHW
|
||||||
|
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||||
|
gain = min(mh / dst_shape[0], mw / dst_shape[1]) # gain = old / new
|
||||||
|
pad = (mw - dst_shape[1] * gain) / 2, (mh - dst_shape[0] * gain) / 2 # wh padding
|
||||||
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
||||||
|
bottom, right = int(mh - pad[1]), int(mw - pad[0])
|
||||||
|
masks = masks[:, top:bottom, left:right]
|
||||||
|
|
||||||
|
masks = F.interpolate(masks[None], dst_shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||||
|
masks = crop_mask(masks, bboxes) # CHW
|
||||||
|
return masks.gt_(0.5)
|
||||||
|
|
||||||
|
|
||||||
|
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
|
||||||
|
"""
|
||||||
|
img1_shape: model input shape, [h, w]
|
||||||
|
img0_shape: origin pic shape, [h, w, 3]
|
||||||
|
masks: [h, w, num]
|
||||||
|
"""
|
||||||
|
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
||||||
|
if ratio_pad is None: # calculate from im0_shape
|
||||||
|
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
||||||
|
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
top, left = int(pad[1]), int(pad[0]) # y, x
|
||||||
|
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
||||||
|
|
||||||
|
if len(masks.shape) < 2:
|
||||||
|
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
||||||
|
masks = masks[top:bottom, left:right]
|
||||||
|
# masks = masks.permute(2, 0, 1).contiguous()
|
||||||
|
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
|
||||||
|
# masks = masks.permute(1, 2, 0).contiguous()
|
||||||
|
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
||||||
|
|
||||||
|
if len(masks.shape) == 2:
|
||||||
|
masks = masks[:, :, None]
|
||||||
|
return masks
|
||||||
|
|
||||||
|
|
||||||
|
def mask_iou(mask1, mask2, eps=1e-7):
|
||||||
|
"""
|
||||||
|
mask1: [N, n] m1 means number of predicted objects
|
||||||
|
mask2: [M, n] m2 means number of gt objects
|
||||||
|
Note: n means image_w x image_h
|
||||||
|
|
||||||
|
return: masks iou, [N, M]
|
||||||
|
"""
|
||||||
|
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
||||||
|
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
||||||
|
return intersection / (union + eps)
|
||||||
|
|
||||||
|
|
||||||
|
def masks_iou(mask1, mask2, eps=1e-7):
|
||||||
|
"""
|
||||||
|
mask1: [N, n] m1 means number of predicted objects
|
||||||
|
mask2: [N, n] m2 means number of gt objects
|
||||||
|
Note: n means image_w x image_h
|
||||||
|
|
||||||
|
return: masks iou, (N, )
|
||||||
|
"""
|
||||||
|
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
||||||
|
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
||||||
|
return intersection / (union + eps)
|
||||||
|
|
||||||
|
|
||||||
|
def masks2segments(masks, strategy='largest'):
|
||||||
|
# Convert masks(n,160,160) into segments(n,xy)
|
||||||
|
segments = []
|
||||||
|
for x in masks.int().cpu().numpy().astype('uint8'):
|
||||||
|
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
||||||
|
if c:
|
||||||
|
if strategy == 'concat': # concatenate all segments
|
||||||
|
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
||||||
|
elif strategy == 'largest': # select largest segment
|
||||||
|
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
||||||
|
else:
|
||||||
|
c = np.zeros((0, 2)) # no segments found
|
||||||
|
segments.append(c.astype('float32'))
|
||||||
|
return segments
|
186
utils/segment/loss.py
Normal file
186
utils/segment/loss.py
Normal file
|
@ -0,0 +1,186 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from ..general import xywh2xyxy
|
||||||
|
from ..loss import FocalLoss, smooth_BCE
|
||||||
|
from ..metrics import bbox_iou
|
||||||
|
from ..torch_utils import de_parallel
|
||||||
|
from .general import crop_mask
|
||||||
|
|
||||||
|
|
||||||
|
class ComputeLoss:
|
||||||
|
# Compute losses
|
||||||
|
def __init__(self, model, autobalance=False, overlap=False):
|
||||||
|
self.sort_obj_iou = False
|
||||||
|
self.overlap = overlap
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
h = model.hyp # hyperparameters
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
# Define criteria
|
||||||
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||||||
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||||
|
|
||||||
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||||
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||||||
|
|
||||||
|
# Focal loss
|
||||||
|
g = h['fl_gamma'] # focal loss gamma
|
||||||
|
if g > 0:
|
||||||
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||||
|
|
||||||
|
m = de_parallel(model).model[-1] # Detect() module
|
||||||
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
||||||
|
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
||||||
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
||||||
|
self.na = m.na # number of anchors
|
||||||
|
self.nc = m.nc # number of classes
|
||||||
|
self.nl = m.nl # number of layers
|
||||||
|
self.nm = m.nm # number of masks
|
||||||
|
self.anchors = m.anchors
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def __call__(self, preds, targets, masks): # predictions, targets, model
|
||||||
|
p, proto = preds
|
||||||
|
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
||||||
|
lcls = torch.zeros(1, device=self.device)
|
||||||
|
lbox = torch.zeros(1, device=self.device)
|
||||||
|
lobj = torch.zeros(1, device=self.device)
|
||||||
|
lseg = torch.zeros(1, device=self.device)
|
||||||
|
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
|
||||||
|
|
||||||
|
# Losses
|
||||||
|
for i, pi in enumerate(p): # layer index, layer predictions
|
||||||
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
|
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
||||||
|
|
||||||
|
n = b.shape[0] # number of targets
|
||||||
|
if n:
|
||||||
|
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
|
||||||
|
|
||||||
|
# Box regression
|
||||||
|
pxy = pxy.sigmoid() * 2 - 0.5
|
||||||
|
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
||||||
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||||
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
||||||
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
|
# Objectness
|
||||||
|
iou = iou.detach().clamp(0).type(tobj.dtype)
|
||||||
|
if self.sort_obj_iou:
|
||||||
|
j = iou.argsort()
|
||||||
|
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
||||||
|
if self.gr < 1:
|
||||||
|
iou = (1.0 - self.gr) + self.gr * iou
|
||||||
|
tobj[b, a, gj, gi] = iou # iou ratio
|
||||||
|
|
||||||
|
# Classification
|
||||||
|
if self.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
||||||
|
t[range(n), tcls[i]] = self.cp
|
||||||
|
lcls += self.BCEcls(pcls, t) # BCE
|
||||||
|
|
||||||
|
# Mask regression
|
||||||
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
||||||
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
||||||
|
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
|
||||||
|
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
|
||||||
|
for bi in b.unique():
|
||||||
|
j = b == bi # matching index
|
||||||
|
if self.overlap:
|
||||||
|
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
|
||||||
|
else:
|
||||||
|
mask_gti = masks[tidxs[i]][j]
|
||||||
|
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
|
||||||
|
|
||||||
|
obji = self.BCEobj(pi[..., 4], tobj)
|
||||||
|
lobj += obji * self.balance[i] # obj loss
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||||
|
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||||||
|
lbox *= self.hyp["box"]
|
||||||
|
lobj *= self.hyp["obj"]
|
||||||
|
lcls *= self.hyp["cls"]
|
||||||
|
lseg *= self.hyp["box"] / bs
|
||||||
|
|
||||||
|
loss = lbox + lobj + lcls + lseg
|
||||||
|
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
|
||||||
|
|
||||||
|
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
||||||
|
# Mask loss for one image
|
||||||
|
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
|
||||||
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
||||||
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
||||||
|
|
||||||
|
def build_targets(self, p, targets):
|
||||||
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||||
|
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||||
|
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
|
||||||
|
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
|
||||||
|
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||||
|
if self.overlap:
|
||||||
|
batch = p[0].shape[0]
|
||||||
|
ti = []
|
||||||
|
for i in range(batch):
|
||||||
|
num = (targets[:, 0] == i).sum() # find number of targets of each image
|
||||||
|
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
|
||||||
|
ti = torch.cat(ti, 1) # (na, nt)
|
||||||
|
else:
|
||||||
|
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
|
||||||
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
|
||||||
|
|
||||||
|
g = 0.5 # bias
|
||||||
|
off = torch.tensor(
|
||||||
|
[
|
||||||
|
[0, 0],
|
||||||
|
[1, 0],
|
||||||
|
[0, 1],
|
||||||
|
[-1, 0],
|
||||||
|
[0, -1], # j,k,l,m
|
||||||
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||||
|
],
|
||||||
|
device=self.device).float() * g # offsets
|
||||||
|
|
||||||
|
for i in range(self.nl):
|
||||||
|
anchors, shape = self.anchors[i], p[i].shape
|
||||||
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
||||||
|
|
||||||
|
# Match targets to anchors
|
||||||
|
t = targets * gain # shape(3,n,7)
|
||||||
|
if nt:
|
||||||
|
# Matches
|
||||||
|
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
||||||
|
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||||
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||||
|
t = t[j] # filter
|
||||||
|
|
||||||
|
# Offsets
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gxi = gain[[2, 3]] - gxy # inverse
|
||||||
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
||||||
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
||||||
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||||
|
t = t.repeat((5, 1, 1))[j]
|
||||||
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||||
|
else:
|
||||||
|
t = targets[0]
|
||||||
|
offsets = 0
|
||||||
|
|
||||||
|
# Define
|
||||||
|
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
||||||
|
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
|
||||||
|
gij = (gxy - offsets).long()
|
||||||
|
gi, gj = gij.T # grid indices
|
||||||
|
|
||||||
|
# Append
|
||||||
|
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
||||||
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||||
|
anch.append(anchors[a]) # anchors
|
||||||
|
tcls.append(c) # class
|
||||||
|
tidxs.append(tidx)
|
||||||
|
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
|
||||||
|
|
||||||
|
return tcls, tbox, indices, anch, tidxs, xywhn
|
210
utils/segment/metrics.py
Normal file
210
utils/segment/metrics.py
Normal file
|
@ -0,0 +1,210 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
Model validation metrics
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from ..metrics import ap_per_class
|
||||||
|
|
||||||
|
|
||||||
|
def fitness(x):
|
||||||
|
# Model fitness as a weighted combination of metrics
|
||||||
|
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
|
||||||
|
return (x[:, :8] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
|
def ap_per_class_box_and_mask(
|
||||||
|
tp_m,
|
||||||
|
tp_b,
|
||||||
|
conf,
|
||||||
|
pred_cls,
|
||||||
|
target_cls,
|
||||||
|
plot=False,
|
||||||
|
save_dir=".",
|
||||||
|
names=(),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
tp_b: tp of boxes.
|
||||||
|
tp_m: tp of masks.
|
||||||
|
other arguments see `func: ap_per_class`.
|
||||||
|
"""
|
||||||
|
results_boxes = ap_per_class(tp_b,
|
||||||
|
conf,
|
||||||
|
pred_cls,
|
||||||
|
target_cls,
|
||||||
|
plot=plot,
|
||||||
|
save_dir=save_dir,
|
||||||
|
names=names,
|
||||||
|
prefix="Box")[2:]
|
||||||
|
results_masks = ap_per_class(tp_m,
|
||||||
|
conf,
|
||||||
|
pred_cls,
|
||||||
|
target_cls,
|
||||||
|
plot=plot,
|
||||||
|
save_dir=save_dir,
|
||||||
|
names=names,
|
||||||
|
prefix="Mask")[2:]
|
||||||
|
|
||||||
|
results = {
|
||||||
|
"boxes": {
|
||||||
|
"p": results_boxes[0],
|
||||||
|
"r": results_boxes[1],
|
||||||
|
"ap": results_boxes[3],
|
||||||
|
"f1": results_boxes[2],
|
||||||
|
"ap_class": results_boxes[4]},
|
||||||
|
"masks": {
|
||||||
|
"p": results_masks[0],
|
||||||
|
"r": results_masks[1],
|
||||||
|
"ap": results_masks[3],
|
||||||
|
"f1": results_masks[2],
|
||||||
|
"ap_class": results_masks[4]}}
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
class Metric:
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.p = [] # (nc, )
|
||||||
|
self.r = [] # (nc, )
|
||||||
|
self.f1 = [] # (nc, )
|
||||||
|
self.all_ap = [] # (nc, 10)
|
||||||
|
self.ap_class_index = [] # (nc, )
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ap50(self):
|
||||||
|
"""AP@0.5 of all classes.
|
||||||
|
Return:
|
||||||
|
(nc, ) or [].
|
||||||
|
"""
|
||||||
|
return self.all_ap[:, 0] if len(self.all_ap) else []
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ap(self):
|
||||||
|
"""AP@0.5:0.95
|
||||||
|
Return:
|
||||||
|
(nc, ) or [].
|
||||||
|
"""
|
||||||
|
return self.all_ap.mean(1) if len(self.all_ap) else []
|
||||||
|
|
||||||
|
@property
|
||||||
|
def mp(self):
|
||||||
|
"""mean precision of all classes.
|
||||||
|
Return:
|
||||||
|
float.
|
||||||
|
"""
|
||||||
|
return self.p.mean() if len(self.p) else 0.0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def mr(self):
|
||||||
|
"""mean recall of all classes.
|
||||||
|
Return:
|
||||||
|
float.
|
||||||
|
"""
|
||||||
|
return self.r.mean() if len(self.r) else 0.0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def map50(self):
|
||||||
|
"""Mean AP@0.5 of all classes.
|
||||||
|
Return:
|
||||||
|
float.
|
||||||
|
"""
|
||||||
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def map(self):
|
||||||
|
"""Mean AP@0.5:0.95 of all classes.
|
||||||
|
Return:
|
||||||
|
float.
|
||||||
|
"""
|
||||||
|
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
||||||
|
|
||||||
|
def mean_results(self):
|
||||||
|
"""Mean of results, return mp, mr, map50, map"""
|
||||||
|
return (self.mp, self.mr, self.map50, self.map)
|
||||||
|
|
||||||
|
def class_result(self, i):
|
||||||
|
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
||||||
|
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
|
||||||
|
|
||||||
|
def get_maps(self, nc):
|
||||||
|
maps = np.zeros(nc) + self.map
|
||||||
|
for i, c in enumerate(self.ap_class_index):
|
||||||
|
maps[c] = self.ap[i]
|
||||||
|
return maps
|
||||||
|
|
||||||
|
def update(self, results):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
results: tuple(p, r, ap, f1, ap_class)
|
||||||
|
"""
|
||||||
|
p, r, all_ap, f1, ap_class_index = results
|
||||||
|
self.p = p
|
||||||
|
self.r = r
|
||||||
|
self.all_ap = all_ap
|
||||||
|
self.f1 = f1
|
||||||
|
self.ap_class_index = ap_class_index
|
||||||
|
|
||||||
|
|
||||||
|
class Metrics:
|
||||||
|
"""Metric for boxes and masks."""
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.metric_box = Metric()
|
||||||
|
self.metric_mask = Metric()
|
||||||
|
|
||||||
|
def update(self, results):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
||||||
|
"""
|
||||||
|
self.metric_box.update(list(results["boxes"].values()))
|
||||||
|
self.metric_mask.update(list(results["masks"].values()))
|
||||||
|
|
||||||
|
def mean_results(self):
|
||||||
|
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
||||||
|
|
||||||
|
def class_result(self, i):
|
||||||
|
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
|
||||||
|
|
||||||
|
def get_maps(self, nc):
|
||||||
|
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ap_class_index(self):
|
||||||
|
# boxes and masks have the same ap_class_index
|
||||||
|
return self.metric_box.ap_class_index
|
||||||
|
|
||||||
|
|
||||||
|
KEYS = [
|
||||||
|
"train/box_loss",
|
||||||
|
"train/seg_loss", # train loss
|
||||||
|
"train/obj_loss",
|
||||||
|
"train/cls_loss",
|
||||||
|
"metrics/precision(B)",
|
||||||
|
"metrics/recall(B)",
|
||||||
|
"metrics/mAP_0.5(B)",
|
||||||
|
"metrics/mAP_0.5:0.95(B)", # metrics
|
||||||
|
"metrics/precision(M)",
|
||||||
|
"metrics/recall(M)",
|
||||||
|
"metrics/mAP_0.5(M)",
|
||||||
|
"metrics/mAP_0.5:0.95(M)", # metrics
|
||||||
|
"val/box_loss",
|
||||||
|
"val/seg_loss", # val loss
|
||||||
|
"val/obj_loss",
|
||||||
|
"val/cls_loss",
|
||||||
|
"x/lr0",
|
||||||
|
"x/lr1",
|
||||||
|
"x/lr2",]
|
||||||
|
|
||||||
|
BEST_KEYS = [
|
||||||
|
"best/epoch",
|
||||||
|
"best/precision(B)",
|
||||||
|
"best/recall(B)",
|
||||||
|
"best/mAP_0.5(B)",
|
||||||
|
"best/mAP_0.5:0.95(B)",
|
||||||
|
"best/precision(M)",
|
||||||
|
"best/recall(M)",
|
||||||
|
"best/mAP_0.5(M)",
|
||||||
|
"best/mAP_0.5:0.95(M)",]
|
143
utils/segment/plots.py
Normal file
143
utils/segment/plots.py
Normal file
|
@ -0,0 +1,143 @@
|
||||||
|
import contextlib
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .. import threaded
|
||||||
|
from ..general import xywh2xyxy
|
||||||
|
from ..plots import Annotator, colors
|
||||||
|
|
||||||
|
|
||||||
|
@threaded
|
||||||
|
def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None):
|
||||||
|
# Plot image grid with labels
|
||||||
|
if isinstance(images, torch.Tensor):
|
||||||
|
images = images.cpu().float().numpy()
|
||||||
|
if isinstance(targets, torch.Tensor):
|
||||||
|
targets = targets.cpu().numpy()
|
||||||
|
if isinstance(masks, torch.Tensor):
|
||||||
|
masks = masks.cpu().numpy().astype(int)
|
||||||
|
|
||||||
|
max_size = 1920 # max image size
|
||||||
|
max_subplots = 16 # max image subplots, i.e. 4x4
|
||||||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||||||
|
bs = min(bs, max_subplots) # limit plot images
|
||||||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||||
|
if np.max(images[0]) <= 1:
|
||||||
|
images *= 255 # de-normalise (optional)
|
||||||
|
|
||||||
|
# Build Image
|
||||||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||||
|
for i, im in enumerate(images):
|
||||||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||||||
|
break
|
||||||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||||
|
im = im.transpose(1, 2, 0)
|
||||||
|
mosaic[y:y + h, x:x + w, :] = im
|
||||||
|
|
||||||
|
# Resize (optional)
|
||||||
|
scale = max_size / ns / max(h, w)
|
||||||
|
if scale < 1:
|
||||||
|
h = math.ceil(scale * h)
|
||||||
|
w = math.ceil(scale * w)
|
||||||
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
||||||
|
|
||||||
|
# Annotate
|
||||||
|
fs = int((h + w) * ns * 0.01) # font size
|
||||||
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
||||||
|
for i in range(i + 1):
|
||||||
|
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||||
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
||||||
|
if paths:
|
||||||
|
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||||
|
if len(targets) > 0:
|
||||||
|
idx = targets[:, 0] == i
|
||||||
|
ti = targets[idx] # image targets
|
||||||
|
|
||||||
|
boxes = xywh2xyxy(ti[:, 2:6]).T
|
||||||
|
classes = ti[:, 1].astype('int')
|
||||||
|
labels = ti.shape[1] == 6 # labels if no conf column
|
||||||
|
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
||||||
|
|
||||||
|
if boxes.shape[1]:
|
||||||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
|
boxes[[1, 3]] *= h
|
||||||
|
elif scale < 1: # absolute coords need scale if image scales
|
||||||
|
boxes *= scale
|
||||||
|
boxes[[0, 2]] += x
|
||||||
|
boxes[[1, 3]] += y
|
||||||
|
for j, box in enumerate(boxes.T.tolist()):
|
||||||
|
cls = classes[j]
|
||||||
|
color = colors(cls)
|
||||||
|
cls = names[cls] if names else cls
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
||||||
|
annotator.box_label(box, label, color=color)
|
||||||
|
|
||||||
|
# Plot masks
|
||||||
|
if len(masks):
|
||||||
|
if masks.max() > 1.0: # mean that masks are overlap
|
||||||
|
image_masks = masks[[i]] # (1, 640, 640)
|
||||||
|
nl = len(ti)
|
||||||
|
index = np.arange(nl).reshape(nl, 1, 1) + 1
|
||||||
|
image_masks = np.repeat(image_masks, nl, axis=0)
|
||||||
|
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
||||||
|
else:
|
||||||
|
image_masks = masks[idx]
|
||||||
|
|
||||||
|
im = np.asarray(annotator.im).copy()
|
||||||
|
for j, box in enumerate(boxes.T.tolist()):
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
color = colors(classes[j])
|
||||||
|
mh, mw = image_masks[j].shape
|
||||||
|
if mh != h or mw != w:
|
||||||
|
mask = image_masks[j].astype(np.uint8)
|
||||||
|
mask = cv2.resize(mask, (w, h))
|
||||||
|
mask = mask.astype(bool)
|
||||||
|
else:
|
||||||
|
mask = image_masks[j].astype(bool)
|
||||||
|
with contextlib.suppress(Exception):
|
||||||
|
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
|
||||||
|
annotator.fromarray(im)
|
||||||
|
annotator.im.save(fname) # save
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
|
||||||
|
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||||
|
save_dir = Path(file).parent if file else Path(dir)
|
||||||
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
files = list(save_dir.glob("results*.csv"))
|
||||||
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
||||||
|
for f in files:
|
||||||
|
try:
|
||||||
|
data = pd.read_csv(f)
|
||||||
|
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
|
||||||
|
0.1 * data.values[:, 11])
|
||||||
|
s = [x.strip() for x in data.columns]
|
||||||
|
x = data.values[:, 0]
|
||||||
|
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
|
||||||
|
y = data.values[:, j]
|
||||||
|
# y[y == 0] = np.nan # don't show zero values
|
||||||
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
|
||||||
|
if best:
|
||||||
|
# best
|
||||||
|
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
|
||||||
|
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
|
||||||
|
else:
|
||||||
|
# last
|
||||||
|
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
|
||||||
|
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
|
||||||
|
# if j in [8, 9, 10]: # share train and val loss y axes
|
||||||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Plotting error for {f}: {e}")
|
||||||
|
ax[1].legend()
|
||||||
|
fig.savefig(save_dir / "results.png", dpi=200)
|
||||||
|
plt.close()
|
432
utils/torch_utils.py
Normal file
432
utils/torch_utils.py
Normal file
|
@ -0,0 +1,432 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
"""
|
||||||
|
PyTorch utils
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
import warnings
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
|
||||||
|
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
|
||||||
|
|
||||||
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||||
|
RANK = int(os.getenv('RANK', -1))
|
||||||
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPs computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
|
# Suppress PyTorch warnings
|
||||||
|
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
|
||||||
|
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
|
||||||
|
def decorate(fn):
|
||||||
|
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
|
||||||
|
|
||||||
|
return decorate
|
||||||
|
|
||||||
|
|
||||||
|
def smartCrossEntropyLoss(label_smoothing=0.0):
|
||||||
|
# Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
|
||||||
|
if check_version(torch.__version__, '1.10.0'):
|
||||||
|
return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
|
||||||
|
if label_smoothing > 0:
|
||||||
|
LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0')
|
||||||
|
return nn.CrossEntropyLoss()
|
||||||
|
|
||||||
|
|
||||||
|
def smart_DDP(model):
|
||||||
|
# Model DDP creation with checks
|
||||||
|
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
||||||
|
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
||||||
|
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
||||||
|
if check_version(torch.__version__, '1.11.0'):
|
||||||
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
||||||
|
else:
|
||||||
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||||||
|
|
||||||
|
|
||||||
|
def reshape_classifier_output(model, n=1000):
|
||||||
|
# Update a TorchVision classification model to class count 'n' if required
|
||||||
|
from models.common import Classify
|
||||||
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
||||||
|
if isinstance(m, Classify): # YOLOv5 Classify() head
|
||||||
|
if m.linear.out_features != n:
|
||||||
|
m.linear = nn.Linear(m.linear.in_features, n)
|
||||||
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
||||||
|
if m.out_features != n:
|
||||||
|
setattr(model, name, nn.Linear(m.in_features, n))
|
||||||
|
elif isinstance(m, nn.Sequential):
|
||||||
|
types = [type(x) for x in m]
|
||||||
|
if nn.Linear in types:
|
||||||
|
i = types.index(nn.Linear) # nn.Linear index
|
||||||
|
if m[i].out_features != n:
|
||||||
|
m[i] = nn.Linear(m[i].in_features, n)
|
||||||
|
elif nn.Conv2d in types:
|
||||||
|
i = types.index(nn.Conv2d) # nn.Conv2d index
|
||||||
|
if m[i].out_channels != n:
|
||||||
|
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def torch_distributed_zero_first(local_rank: int):
|
||||||
|
# Decorator to make all processes in distributed training wait for each local_master to do something
|
||||||
|
if local_rank not in [-1, 0]:
|
||||||
|
dist.barrier(device_ids=[local_rank])
|
||||||
|
yield
|
||||||
|
if local_rank == 0:
|
||||||
|
dist.barrier(device_ids=[0])
|
||||||
|
|
||||||
|
|
||||||
|
def device_count():
|
||||||
|
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
|
||||||
|
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
|
||||||
|
try:
|
||||||
|
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
|
||||||
|
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
|
||||||
|
except Exception:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
|
def select_device(device='', batch_size=0, newline=True):
|
||||||
|
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
||||||
|
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
|
||||||
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
||||||
|
cpu = device == 'cpu'
|
||||||
|
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
||||||
|
if cpu or mps:
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||||
|
elif device: # non-cpu device requested
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
||||||
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
||||||
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
||||||
|
|
||||||
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
||||||
|
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
||||||
|
n = len(devices) # device count
|
||||||
|
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
||||||
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||||
|
space = ' ' * (len(s) + 1)
|
||||||
|
for i, d in enumerate(devices):
|
||||||
|
p = torch.cuda.get_device_properties(i)
|
||||||
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
||||||
|
arg = 'cuda:0'
|
||||||
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
||||||
|
s += 'MPS\n'
|
||||||
|
arg = 'mps'
|
||||||
|
else: # revert to CPU
|
||||||
|
s += 'CPU\n'
|
||||||
|
arg = 'cpu'
|
||||||
|
|
||||||
|
if not newline:
|
||||||
|
s = s.rstrip()
|
||||||
|
LOGGER.info(s)
|
||||||
|
return torch.device(arg)
|
||||||
|
|
||||||
|
|
||||||
|
def time_sync():
|
||||||
|
# PyTorch-accurate time
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def profile(input, ops, n=10, device=None):
|
||||||
|
""" YOLOv5 speed/memory/FLOPs profiler
|
||||||
|
Usage:
|
||||||
|
input = torch.randn(16, 3, 640, 640)
|
||||||
|
m1 = lambda x: x * torch.sigmoid(x)
|
||||||
|
m2 = nn.SiLU()
|
||||||
|
profile(input, [m1, m2], n=100) # profile over 100 iterations
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
if not isinstance(device, torch.device):
|
||||||
|
device = select_device(device)
|
||||||
|
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
||||||
|
f"{'input':>24s}{'output':>24s}")
|
||||||
|
|
||||||
|
for x in input if isinstance(input, list) else [input]:
|
||||||
|
x = x.to(device)
|
||||||
|
x.requires_grad = True
|
||||||
|
for m in ops if isinstance(ops, list) else [ops]:
|
||||||
|
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||||
|
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
||||||
|
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
||||||
|
try:
|
||||||
|
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
|
||||||
|
except Exception:
|
||||||
|
flops = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
for _ in range(n):
|
||||||
|
t[0] = time_sync()
|
||||||
|
y = m(x)
|
||||||
|
t[1] = time_sync()
|
||||||
|
try:
|
||||||
|
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
||||||
|
t[2] = time_sync()
|
||||||
|
except Exception: # no backward method
|
||||||
|
# print(e) # for debug
|
||||||
|
t[2] = float('nan')
|
||||||
|
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||||
|
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||||
|
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
||||||
|
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
|
||||||
|
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
|
||||||
|
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||||
|
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
results.append(None)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def is_parallel(model):
|
||||||
|
# Returns True if model is of type DP or DDP
|
||||||
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
|
|
||||||
|
|
||||||
|
def de_parallel(model):
|
||||||
|
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
||||||
|
return model.module if is_parallel(model) else model
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_weights(model):
|
||||||
|
for m in model.modules():
|
||||||
|
t = type(m)
|
||||||
|
if t is nn.Conv2d:
|
||||||
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||||
|
elif t is nn.BatchNorm2d:
|
||||||
|
m.eps = 1e-3
|
||||||
|
m.momentum = 0.03
|
||||||
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
||||||
|
m.inplace = True
|
||||||
|
|
||||||
|
|
||||||
|
def find_modules(model, mclass=nn.Conv2d):
|
||||||
|
# Finds layer indices matching module class 'mclass'
|
||||||
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||||
|
|
||||||
|
|
||||||
|
def sparsity(model):
|
||||||
|
# Return global model sparsity
|
||||||
|
a, b = 0, 0
|
||||||
|
for p in model.parameters():
|
||||||
|
a += p.numel()
|
||||||
|
b += (p == 0).sum()
|
||||||
|
return b / a
|
||||||
|
|
||||||
|
|
||||||
|
def prune(model, amount=0.3):
|
||||||
|
# Prune model to requested global sparsity
|
||||||
|
import torch.nn.utils.prune as prune
|
||||||
|
for name, m in model.named_modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||||
|
prune.remove(m, 'weight') # make permanent
|
||||||
|
LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
|
||||||
|
|
||||||
|
|
||||||
|
def fuse_conv_and_bn(conv, bn):
|
||||||
|
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||||
|
fusedconv = nn.Conv2d(conv.in_channels,
|
||||||
|
conv.out_channels,
|
||||||
|
kernel_size=conv.kernel_size,
|
||||||
|
stride=conv.stride,
|
||||||
|
padding=conv.padding,
|
||||||
|
dilation=conv.dilation,
|
||||||
|
groups=conv.groups,
|
||||||
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||||
|
|
||||||
|
# Prepare filters
|
||||||
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||||
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||||
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
||||||
|
|
||||||
|
# Prepare spatial bias
|
||||||
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||||
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||||
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||||
|
|
||||||
|
return fusedconv
|
||||||
|
|
||||||
|
|
||||||
|
def model_info(model, verbose=False, imgsz=640):
|
||||||
|
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||||
|
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||||
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||||
|
if verbose:
|
||||||
|
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
|
||||||
|
for i, (name, p) in enumerate(model.named_parameters()):
|
||||||
|
name = name.replace('module_list.', '')
|
||||||
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||||
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||||
|
|
||||||
|
try: # FLOPs
|
||||||
|
p = next(model.parameters())
|
||||||
|
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
|
||||||
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
||||||
|
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
||||||
|
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
|
||||||
|
fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs
|
||||||
|
except Exception:
|
||||||
|
fs = ''
|
||||||
|
|
||||||
|
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
|
||||||
|
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||||
|
|
||||||
|
|
||||||
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
||||||
|
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
||||||
|
if ratio == 1.0:
|
||||||
|
return img
|
||||||
|
h, w = img.shape[2:]
|
||||||
|
s = (int(h * ratio), int(w * ratio)) # new size
|
||||||
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||||
|
if not same_shape: # pad/crop img
|
||||||
|
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
||||||
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||||
|
|
||||||
|
|
||||||
|
def copy_attr(a, b, include=(), exclude=()):
|
||||||
|
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||||
|
for k, v in b.__dict__.items():
|
||||||
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
setattr(a, k, v)
|
||||||
|
|
||||||
|
|
||||||
|
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
|
||||||
|
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
|
||||||
|
g = [], [], [] # optimizer parameter groups
|
||||||
|
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||||||
|
for v in model.modules():
|
||||||
|
for p_name, p in v.named_parameters(recurse=0):
|
||||||
|
if p_name == 'bias': # bias (no decay)
|
||||||
|
g[2].append(p)
|
||||||
|
elif p_name == 'weight' and isinstance(v, bn): # weight (no decay)
|
||||||
|
g[1].append(p)
|
||||||
|
else:
|
||||||
|
g[0].append(p) # weight (with decay)
|
||||||
|
|
||||||
|
if name == 'Adam':
|
||||||
|
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
|
||||||
|
elif name == 'AdamW':
|
||||||
|
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
|
||||||
|
elif name == 'RMSProp':
|
||||||
|
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
|
||||||
|
elif name == 'SGD':
|
||||||
|
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'Optimizer {name} not implemented.')
|
||||||
|
|
||||||
|
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
|
||||||
|
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
|
||||||
|
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
|
||||||
|
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
|
||||||
|
return optimizer
|
||||||
|
|
||||||
|
|
||||||
|
def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
|
||||||
|
# YOLOv5 torch.hub.load() wrapper with smart error/issue handling
|
||||||
|
if check_version(torch.__version__, '1.9.1'):
|
||||||
|
kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors
|
||||||
|
if check_version(torch.__version__, '1.12.0'):
|
||||||
|
kwargs['trust_repo'] = True # argument required starting in torch 0.12
|
||||||
|
try:
|
||||||
|
return torch.hub.load(repo, model, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
return torch.hub.load(repo, model, force_reload=True, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
|
||||||
|
# Resume training from a partially trained checkpoint
|
||||||
|
best_fitness = 0.0
|
||||||
|
start_epoch = ckpt['epoch'] + 1
|
||||||
|
if ckpt['optimizer'] is not None:
|
||||||
|
optimizer.load_state_dict(ckpt['optimizer']) # optimizer
|
||||||
|
best_fitness = ckpt['best_fitness']
|
||||||
|
if ema and ckpt.get('ema'):
|
||||||
|
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
|
||||||
|
ema.updates = ckpt['updates']
|
||||||
|
if resume:
|
||||||
|
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
|
||||||
|
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
|
||||||
|
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
|
||||||
|
if epochs < start_epoch:
|
||||||
|
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
|
||||||
|
epochs += ckpt['epoch'] # finetune additional epochs
|
||||||
|
return best_fitness, start_epoch, epochs
|
||||||
|
|
||||||
|
|
||||||
|
class EarlyStopping:
|
||||||
|
# YOLOv5 simple early stopper
|
||||||
|
def __init__(self, patience=30):
|
||||||
|
self.best_fitness = 0.0 # i.e. mAP
|
||||||
|
self.best_epoch = 0
|
||||||
|
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
||||||
|
self.possible_stop = False # possible stop may occur next epoch
|
||||||
|
|
||||||
|
def __call__(self, epoch, fitness):
|
||||||
|
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
||||||
|
self.best_epoch = epoch
|
||||||
|
self.best_fitness = fitness
|
||||||
|
delta = epoch - self.best_epoch # epochs without improvement
|
||||||
|
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
||||||
|
stop = delta >= self.patience # stop training if patience exceeded
|
||||||
|
if stop:
|
||||||
|
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
|
||||||
|
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
|
||||||
|
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
|
||||||
|
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
|
||||||
|
return stop
|
||||||
|
|
||||||
|
|
||||||
|
class ModelEMA:
|
||||||
|
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
||||||
|
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
||||||
|
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
||||||
|
# Create EMA
|
||||||
|
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
||||||
|
self.updates = updates # number of EMA updates
|
||||||
|
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
||||||
|
for p in self.ema.parameters():
|
||||||
|
p.requires_grad_(False)
|
||||||
|
|
||||||
|
def update(self, model):
|
||||||
|
# Update EMA parameters
|
||||||
|
self.updates += 1
|
||||||
|
d = self.decay(self.updates)
|
||||||
|
|
||||||
|
msd = de_parallel(model).state_dict() # model state_dict
|
||||||
|
for k, v in self.ema.state_dict().items():
|
||||||
|
if v.dtype.is_floating_point: # true for FP16 and FP32
|
||||||
|
v *= d
|
||||||
|
v += (1 - d) * msd[k].detach()
|
||||||
|
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
|
||||||
|
|
||||||
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||||
|
# Update EMA attributes
|
||||||
|
copy_attr(self.ema, model, include, exclude)
|
85
utils/triton.py
Normal file
85
utils/triton.py
Normal file
|
@ -0,0 +1,85 @@
|
||||||
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||||
|
""" Utils to interact with the Triton Inference Server
|
||||||
|
"""
|
||||||
|
|
||||||
|
import typing
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class TritonRemoteModel:
|
||||||
|
""" A wrapper over a model served by the Triton Inference Server. It can
|
||||||
|
be configured to communicate over GRPC or HTTP. It accepts Torch Tensors
|
||||||
|
as input and returns them as outputs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, url: str):
|
||||||
|
"""
|
||||||
|
Keyword arguments:
|
||||||
|
url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
|
||||||
|
"""
|
||||||
|
|
||||||
|
parsed_url = urlparse(url)
|
||||||
|
if parsed_url.scheme == "grpc":
|
||||||
|
from tritonclient.grpc import InferenceServerClient, InferInput
|
||||||
|
|
||||||
|
self.client = InferenceServerClient(parsed_url.netloc) # Triton GRPC client
|
||||||
|
model_repository = self.client.get_model_repository_index()
|
||||||
|
self.model_name = model_repository.models[0].name
|
||||||
|
self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)
|
||||||
|
|
||||||
|
def create_input_placeholders() -> typing.List[InferInput]:
|
||||||
|
return [
|
||||||
|
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
|
||||||
|
|
||||||
|
else:
|
||||||
|
from tritonclient.http import InferenceServerClient, InferInput
|
||||||
|
|
||||||
|
self.client = InferenceServerClient(parsed_url.netloc) # Triton HTTP client
|
||||||
|
model_repository = self.client.get_model_repository_index()
|
||||||
|
self.model_name = model_repository[0]['name']
|
||||||
|
self.metadata = self.client.get_model_metadata(self.model_name)
|
||||||
|
|
||||||
|
def create_input_placeholders() -> typing.List[InferInput]:
|
||||||
|
return [
|
||||||
|
InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]
|
||||||
|
|
||||||
|
self._create_input_placeholders_fn = create_input_placeholders
|
||||||
|
|
||||||
|
@property
|
||||||
|
def runtime(self):
|
||||||
|
"""Returns the model runtime"""
|
||||||
|
return self.metadata.get("backend", self.metadata.get("platform"))
|
||||||
|
|
||||||
|
def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
|
||||||
|
""" Invokes the model. Parameters can be provided via args or kwargs.
|
||||||
|
args, if provided, are assumed to match the order of inputs of the model.
|
||||||
|
kwargs are matched with the model input names.
|
||||||
|
"""
|
||||||
|
inputs = self._create_inputs(*args, **kwargs)
|
||||||
|
response = self.client.infer(model_name=self.model_name, inputs=inputs)
|
||||||
|
result = []
|
||||||
|
for output in self.metadata['outputs']:
|
||||||
|
tensor = torch.as_tensor(response.as_numpy(output['name']))
|
||||||
|
result.append(tensor)
|
||||||
|
return result[0] if len(result) == 1 else result
|
||||||
|
|
||||||
|
def _create_inputs(self, *args, **kwargs):
|
||||||
|
args_len, kwargs_len = len(args), len(kwargs)
|
||||||
|
if not args_len and not kwargs_len:
|
||||||
|
raise RuntimeError("No inputs provided.")
|
||||||
|
if args_len and kwargs_len:
|
||||||
|
raise RuntimeError("Cannot specify args and kwargs at the same time")
|
||||||
|
|
||||||
|
placeholders = self._create_input_placeholders_fn()
|
||||||
|
if args_len:
|
||||||
|
if args_len != len(placeholders):
|
||||||
|
raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
|
||||||
|
for input, value in zip(placeholders, args):
|
||||||
|
input.set_data_from_numpy(value.cpu().numpy())
|
||||||
|
else:
|
||||||
|
for input in placeholders:
|
||||||
|
value = kwargs[input.name]
|
||||||
|
input.set_data_from_numpy(value.cpu().numpy())
|
||||||
|
return placeholders
|
Loading…
Reference in a new issue