percept_simulator_2023/processing_chain/Yolo5Segmentation.py
2023-07-31 15:23:13 +02:00

402 lines
14 KiB
Python

import torch
import os
import torchvision as tv
import time
from models.yolo import Detect, Model
# Warning: The line "#matplotlib.use('Agg') # for writing to files only"
# in utils/plots.py prevents the further use of matplotlib
class Yolo5Segmentation(torch.nn.Module):
default_dtype = torch.float32
conf: float = 0.25 # NMS confidence threshold
iou: float = 0.45 # NMS IoU threshold
agnostic: bool = False # NMS class-agnostic
multi_label: bool = False # NMS multiple labels per box
max_det: int = 1000 # maximum number of detections per image
number_of_maps: int = 32
imgsz: tuple[int, int] = (640, 640) # inference size (height, width)
device: torch.device = torch.device("cpu")
weigh_path: str = ""
class_names: dict
stride: int
found_class_id: torch.Tensor | None = None
def __init__(self, mode: int = 3, torch_device: str = "cpu"):
super().__init__()
model_pretrained_path: str = "segment_pretrained"
assert mode < 5
assert mode >= 0
if mode == 0:
model_pretrained_weights: str = "yolov5n-seg.pt"
elif mode == 1:
model_pretrained_weights = "yolov5s-seg.pt"
elif mode == 2:
model_pretrained_weights = "yolov5m-seg.pt"
elif mode == 3:
model_pretrained_weights = "yolov5l-seg.pt"
elif mode == 4:
model_pretrained_weights = "yolov5x-seg.pt"
self.weigh_path = os.path.join(model_pretrained_path, model_pretrained_weights)
self.device = torch.device(torch_device)
self.network = self.attempt_load(
self.weigh_path, device=self.device, inplace=True, fuse=True
)
self.stride = max(int(self.network.stride.max()), 32) # model stride
self.network.float()
self.class_names = dict(self.network.names) # type: ignore
# classes: (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
def forward(self, input: torch.Tensor, classes=None) -> torch.Tensor:
assert input.ndim == 4
assert input.shape[0] == 1
assert input.shape[1] == 3
input_resized, (
remove_left,
remove_top,
remove_height,
remove_width,
) = self.scale_and_pad(
input,
)
network_output = self.network(input_resized)
number_of_classes = network_output[0].shape[2] - self.number_of_maps - 5
assert len(self.class_names) == number_of_classes
maps = network_output[1]
# results matrix:
# Fist Dimension:
# Image Number
# ...
# Last Dimension:
# center_x: 0
# center_y: 1
# width: 2
# height: 3
# obj_conf (object): 4
# cls_conf (class): 5
results = non_max_suppression(
network_output[0],
self.conf,
self.iou,
classes,
self.agnostic,
self.multi_label,
max_det=self.max_det,
nm=self.number_of_maps,
)
image_id = 0
if results[image_id].shape[0] > 0:
masks = self.process_mask_native(
maps[image_id],
results[image_id][:, 6:],
results[image_id][:, :4],
)
self.found_class_id = results[image_id][:, 5]
output = tv.transforms.functional.resize(
tv.transforms.functional.crop(
img=masks,
top=int(remove_top),
left=int(remove_left),
height=int(remove_height),
width=int(remove_width),
),
size=(input.shape[-2], input.shape[-1]),
)
else:
output = None
self.found_class_id = None
return output
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# code stolen and/or modified from Yolov5 ->
def scale_and_pad(
self,
input,
):
ratio = min(self.imgsz[0] / input.shape[-2], self.imgsz[1] / input.shape[-1])
shape_new_x = int(input.shape[-2] * ratio)
shape_new_y = int(input.shape[-1] * ratio)
dx = self.imgsz[0] - shape_new_x
dy = self.imgsz[1] - shape_new_y
dx_0 = dx // 2
dy_0 = dy // 2
image_resize = tv.transforms.functional.pad(
tv.transforms.functional.resize(input, size=(shape_new_x, shape_new_y)),
padding=[dy_0, dx_0, int(dy - dy_0), int(dx - dx_0)],
fill=float(114.0 / 255.0),
)
return image_resize, (dy_0, dx_0, shape_new_x, shape_new_y)
def process_mask_native(self, protos, masks_in, bboxes):
masks = (
(masks_in @ protos.float().view(protos.shape[0], -1))
.sigmoid()
.view(-1, protos.shape[1], protos.shape[2])
)
masks = torch.nn.functional.interpolate(
masks[None],
(self.imgsz[0], self.imgsz[1]),
mode="bilinear",
align_corners=False,
)[
0
] # CHW
x1, y1, x2, y2 = torch.chunk(bboxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(masks.shape[2], device=masks.device, dtype=x1.dtype)[
None, None, :
] # rows shape(1,w,1)
c = torch.arange(masks.shape[1], device=masks.device, dtype=x1.dtype)[
None, :, None
] # cols shape(h,1,1)
masks = masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
return masks.gt_(0.5)
def attempt_load(self, weights, device=None, inplace=True, fuse=True):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(w, map_location="cpu") # load
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
if not hasattr(ckpt, "stride"):
ckpt.stride = torch.tensor([32.0])
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
model.append(
ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()
) # model in eval mode
# Module compatibility updates
for m in model.modules():
t = type(m)
if t in (
torch.nn.Hardswish,
torch.nn.LeakyReLU,
torch.nn.ReLU,
torch.nn.ReLU6,
torch.nn.SiLU,
Detect,
Model,
):
m.inplace = inplace # torch 1.7.0 compatibility
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, "anchor_grid")
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
elif t is torch.nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return detection ensemble
print(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(model, k, getattr(model[0], k))
model.stride = model[
torch.argmax(torch.tensor([m.stride.max() for m in model])).int()
].stride # max stride
assert all(
model[0].nc == m.nc for m in model
), f"Models have different class counts: {[m.nc for m in model]}"
return model
class Ensemble(torch.nn.ModuleList):
# Ensemble of models
def __init__(self):
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def non_max_suppression(
prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nm=0, # number of masks
):
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""
if isinstance(
prediction, (list, tuple)
): # YOLOv5 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
device = prediction.device
mps = "mps" in device.type # Apple MPS
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
prediction = prediction.cpu()
bs = prediction.shape[0] # batch size
nc = prediction.shape[2] - nm - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Checks
assert (
0 <= conf_thres <= 1
), f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
assert (
0 <= iou_thres <= 1
), f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
# Settings
# min_wh = 2 # (pixels) minimum box width and height
max_wh = 7680 # (pixels) maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 0.5 + 0.05 * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
mi = 5 + nc # mask start index
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
lb = labels[xi]
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box/Mask
box = xywh2xyxy(
x[:, :4]
) # center_x, center_y, width, height) to (x1, y1, x2, y2)
mask = x[:, mi:] # zero columns if no masks
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
else: # best class only
conf, j = x[:, 5:mi].max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
else:
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = tv.ops.nms(boxes, scores, iou_thres) # NMS
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(
1, keepdim=True
) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if mps:
output[xi] = output[xi].to(device)
if (time.time() - t) > time_limit:
print(f"WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded")
break # time limit exceeded
return output
def box_iou(box1, box2, eps=1e-7):
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone()
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
# <- code stolen and/or modified from Yolov5