210 lines
5.3 KiB
Python
210 lines
5.3 KiB
Python
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
"""
|
|
Model validation metrics
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
from ..metrics import ap_per_class
|
|
|
|
|
|
def fitness(x):
|
|
# Model fitness as a weighted combination of metrics
|
|
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
|
|
return (x[:, :8] * w).sum(1)
|
|
|
|
|
|
def ap_per_class_box_and_mask(
|
|
tp_m,
|
|
tp_b,
|
|
conf,
|
|
pred_cls,
|
|
target_cls,
|
|
plot=False,
|
|
save_dir=".",
|
|
names=(),
|
|
):
|
|
"""
|
|
Args:
|
|
tp_b: tp of boxes.
|
|
tp_m: tp of masks.
|
|
other arguments see `func: ap_per_class`.
|
|
"""
|
|
results_boxes = ap_per_class(tp_b,
|
|
conf,
|
|
pred_cls,
|
|
target_cls,
|
|
plot=plot,
|
|
save_dir=save_dir,
|
|
names=names,
|
|
prefix="Box")[2:]
|
|
results_masks = ap_per_class(tp_m,
|
|
conf,
|
|
pred_cls,
|
|
target_cls,
|
|
plot=plot,
|
|
save_dir=save_dir,
|
|
names=names,
|
|
prefix="Mask")[2:]
|
|
|
|
results = {
|
|
"boxes": {
|
|
"p": results_boxes[0],
|
|
"r": results_boxes[1],
|
|
"ap": results_boxes[3],
|
|
"f1": results_boxes[2],
|
|
"ap_class": results_boxes[4]},
|
|
"masks": {
|
|
"p": results_masks[0],
|
|
"r": results_masks[1],
|
|
"ap": results_masks[3],
|
|
"f1": results_masks[2],
|
|
"ap_class": results_masks[4]}}
|
|
return results
|
|
|
|
|
|
class Metric:
|
|
|
|
def __init__(self) -> None:
|
|
self.p = [] # (nc, )
|
|
self.r = [] # (nc, )
|
|
self.f1 = [] # (nc, )
|
|
self.all_ap = [] # (nc, 10)
|
|
self.ap_class_index = [] # (nc, )
|
|
|
|
@property
|
|
def ap50(self):
|
|
"""AP@0.5 of all classes.
|
|
Return:
|
|
(nc, ) or [].
|
|
"""
|
|
return self.all_ap[:, 0] if len(self.all_ap) else []
|
|
|
|
@property
|
|
def ap(self):
|
|
"""AP@0.5:0.95
|
|
Return:
|
|
(nc, ) or [].
|
|
"""
|
|
return self.all_ap.mean(1) if len(self.all_ap) else []
|
|
|
|
@property
|
|
def mp(self):
|
|
"""mean precision of all classes.
|
|
Return:
|
|
float.
|
|
"""
|
|
return self.p.mean() if len(self.p) else 0.0
|
|
|
|
@property
|
|
def mr(self):
|
|
"""mean recall of all classes.
|
|
Return:
|
|
float.
|
|
"""
|
|
return self.r.mean() if len(self.r) else 0.0
|
|
|
|
@property
|
|
def map50(self):
|
|
"""Mean AP@0.5 of all classes.
|
|
Return:
|
|
float.
|
|
"""
|
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
|
|
|
@property
|
|
def map(self):
|
|
"""Mean AP@0.5:0.95 of all classes.
|
|
Return:
|
|
float.
|
|
"""
|
|
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
|
|
|
def mean_results(self):
|
|
"""Mean of results, return mp, mr, map50, map"""
|
|
return (self.mp, self.mr, self.map50, self.map)
|
|
|
|
def class_result(self, i):
|
|
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
|
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
|
|
|
|
def get_maps(self, nc):
|
|
maps = np.zeros(nc) + self.map
|
|
for i, c in enumerate(self.ap_class_index):
|
|
maps[c] = self.ap[i]
|
|
return maps
|
|
|
|
def update(self, results):
|
|
"""
|
|
Args:
|
|
results: tuple(p, r, ap, f1, ap_class)
|
|
"""
|
|
p, r, all_ap, f1, ap_class_index = results
|
|
self.p = p
|
|
self.r = r
|
|
self.all_ap = all_ap
|
|
self.f1 = f1
|
|
self.ap_class_index = ap_class_index
|
|
|
|
|
|
class Metrics:
|
|
"""Metric for boxes and masks."""
|
|
|
|
def __init__(self) -> None:
|
|
self.metric_box = Metric()
|
|
self.metric_mask = Metric()
|
|
|
|
def update(self, results):
|
|
"""
|
|
Args:
|
|
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
|
"""
|
|
self.metric_box.update(list(results["boxes"].values()))
|
|
self.metric_mask.update(list(results["masks"].values()))
|
|
|
|
def mean_results(self):
|
|
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
|
|
|
def class_result(self, i):
|
|
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
|
|
|
|
def get_maps(self, nc):
|
|
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
|
|
|
@property
|
|
def ap_class_index(self):
|
|
# boxes and masks have the same ap_class_index
|
|
return self.metric_box.ap_class_index
|
|
|
|
|
|
KEYS = [
|
|
"train/box_loss",
|
|
"train/seg_loss", # train loss
|
|
"train/obj_loss",
|
|
"train/cls_loss",
|
|
"metrics/precision(B)",
|
|
"metrics/recall(B)",
|
|
"metrics/mAP_0.5(B)",
|
|
"metrics/mAP_0.5:0.95(B)", # metrics
|
|
"metrics/precision(M)",
|
|
"metrics/recall(M)",
|
|
"metrics/mAP_0.5(M)",
|
|
"metrics/mAP_0.5:0.95(M)", # metrics
|
|
"val/box_loss",
|
|
"val/seg_loss", # val loss
|
|
"val/obj_loss",
|
|
"val/cls_loss",
|
|
"x/lr0",
|
|
"x/lr1",
|
|
"x/lr2",]
|
|
|
|
BEST_KEYS = [
|
|
"best/epoch",
|
|
"best/precision(B)",
|
|
"best/recall(B)",
|
|
"best/mAP_0.5(B)",
|
|
"best/mAP_0.5:0.95(B)",
|
|
"best/precision(M)",
|
|
"best/recall(M)",
|
|
"best/mAP_0.5(M)",
|
|
"best/mAP_0.5:0.95(M)",]
|