pynnmf/plot.py

47 lines
1.2 KiB
Python
Raw Permalink Normal View History

2024-05-30 14:08:44 +02:00
import numpy as np
import matplotlib.pyplot as plt
data = np.load("data_log_cnn_20_True_0.001_0.01_True_True_True_True.npy")
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k", label="CNN + CNN Top")
data = np.load("data_log_cnn_20_False_0.001_0.01_True_True_True_True.npy")
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k--", label="CNN")
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_True.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"r",
label="NNMF + CNN Top (Iter 20, KL)",
)
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_True.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"r--",
label="NNMF (Iter 20, KL)",
)
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_False.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"b",
label="NNMF + CNN Top (Iter 20, MSE)",
)
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_False.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"b--",
label="NNMF (Iter 20, MSE)",
)
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Error [%]")
plt.show()