pynnmf/Y.py

83 lines
2.9 KiB
Python
Raw Normal View History

2024-05-31 18:43:36 +02:00
import torch
from typing import Callable
class Y(torch.nn.Module):
"""
A PyTorch module that splits the processing path of a input tensor
and processes it through multiple torch.nn.Sequential segments,
then combines the outputs using a specified methods.
This module allows for creating split paths within a `torch.nn.Sequential`
model, making it possible to implement architectures with skip connections
or parallel paths without abandoning the sequential model structure.
Attributes:
segments (torch.nn.Sequential[torch.nn.Sequential]): A list of sequential modules to
process the input tensor.
combine_func (Callable | None): A function to combine the outputs
from the segments.
dim (int | None): The dimension along which to concatenate
the outputs if `combine_func` is `torch.cat`.
Args:
segments (torch.nn.Sequential[torch.nn.Sequential]): A torch.nn.Sequential
with a list of sequential modules to process the input tensor.
combine (str, optional): The method to combine the outputs.
"cat" for concatenation (default), or "func" to use a
custom combine function.
dim (int | None, optional): The dimension along which to
concatenate the outputs if `combine` is "cat".
Defaults to 1.
combine_func (Callable | None, optional): A custom function
to combine the outputs if `combine` is "func".
Defaults to None.
Example:
A simple example for the `Y` module with two sub-torch.nn.Sequential:
----- segment_a -----
main_Sequential ----| |---- main_Sequential
----- segment_b -----
segments = [segment_a, segment_b]
y_split = Y(segments)
result = y_split(input_tensor)
Methods:
forward(input: torch.Tensor) -> torch.Tensor:
Processes the input tensor through the segments and
combines the results.
"""
segments: torch.nn.Sequential
combine_func: Callable
dim: int | None
def __init__(
self,
segments: torch.nn.Sequential,
combine: str = "cat", # "cat", "func"
dim: int | None = 1,
combine_func: Callable | None = None,
):
super().__init__()
self.segments = segments
self.dim = dim
if combine.upper() == "CAT":
self.combine_func = torch.cat
else:
assert combine_func is not None
self.combine_func = combine_func
def forward(self, input: torch.Tensor) -> torch.Tensor:
results: list[torch.Tensor] = []
for segment in self.segments:
results.append(segment(input))
if self.dim is None:
return self.combine_func(results)
else:
return self.combine_func(results, dim=self.dim)