import numpy as np import matplotlib.pyplot as plt data = np.load("data_log_cnn_20_True_0.001_0.01_True_True_True_True.npy") plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k", label="CNN + CNN Top") data = np.load("data_log_cnn_20_False_0.001_0.01_True_True_True_True.npy") plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k--", label="CNN") data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_True.npy") plt.loglog( data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "r", label="NNMF + CNN Top (Iter 20, KL)", ) data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_True.npy") plt.loglog( data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "r--", label="NNMF (Iter 20, KL)", ) data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_False.npy") plt.loglog( data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "b", label="NNMF + CNN Top (Iter 20, MSE)", ) data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_False.npy") plt.loglog( data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "b--", label="NNMF (Iter 20, MSE)", ) plt.legend() plt.xlabel("Epoch") plt.ylabel("Error [%]") plt.show()