import torch from NNMFConv2d import NNMFConv2d from NNMFConv2dP import NNMFConv2dP from SplitOnOffLayer import SplitOnOffLayer def make_network( use_nnmf: bool, cnn_top: bool, input_dim_x: int, input_dim_y: int, input_number_of_channel: int, iterations: int, init_min: float = 0.0, init_max: float = 1.0, use_convolution: bool = False, convolution_contribution_map_enable: bool = False, epsilon: bool | None = None, positive_function_type: int = 0, beta: float | None = None, number_of_output_channels_conv1: int = 32, number_of_output_channels_conv2: int = 64, number_of_output_channels_flatten2: int = 96, number_of_output_channels_full1: int = 10, kernel_size_conv1: tuple[int, int] = (5, 5), kernel_size_pool1: tuple[int, int] = (2, 2), kernel_size_conv2: tuple[int, int] = (5, 5), kernel_size_pool2: tuple[int, int] = (2, 2), stride_conv1: tuple[int, int] = (1, 1), stride_pool1: tuple[int, int] = (2, 2), stride_conv2: tuple[int, int] = (1, 1), stride_pool2: tuple[int, int] = (2, 2), padding_conv1: int = 0, padding_pool1: int = 0, padding_conv2: int = 0, padding_pool2: int = 0, enable_onoff: bool = False, local_learning_0: bool = False, local_learning_1: bool = False, local_learning_2: bool = False, local_learning_3: bool = False, local_learning_kl: bool = True, p_mode_0: bool = False, p_mode_1: bool = False, p_mode_2: bool = False, p_mode_3: bool = False, use_reconstruction: bool = False, max_pool: bool = True, ) -> tuple[torch.nn.Sequential, list[int], list[int]]: if enable_onoff: input_number_of_channel *= 2 list_cnn_top_id: list[int] = [] list_other_id: list[int] = [] test_image = torch.ones((1, input_number_of_channel, input_dim_x, input_dim_y)) network = torch.nn.Sequential() if enable_onoff: network.append(SplitOnOffLayer()) test_image = network[-1](test_image) list_other_id.append(len(network)) if use_nnmf: if p_mode_0: network.append( NNMFConv2dP( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv1, kernel_size=kernel_size_conv1, convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_0, local_learning_kl=local_learning_kl, use_reconstruction=use_reconstruction, ) ) else: network.append( NNMFConv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv1, kernel_size=kernel_size_conv1, convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_0, local_learning_kl=local_learning_kl, ) ) test_image = network[-1](test_image) else: network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv1, kernel_size=kernel_size_conv1, stride=stride_conv1, padding=padding_conv1, ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if cnn_top: list_cnn_top_id.append(len(network)) network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True, ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if max_pool: network.append( torch.nn.MaxPool2d( kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1, ) ) else: network.append( torch.nn.AvgPool2d( kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1, ) ) test_image = network[-1](test_image) list_other_id.append(len(network)) if use_nnmf: if p_mode_1: network.append( NNMFConv2dP( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv2, kernel_size=kernel_size_conv2, convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_1, local_learning_kl=local_learning_kl, use_reconstruction=use_reconstruction, ) ) else: network.append( NNMFConv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv2, kernel_size=kernel_size_conv2, convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_1, local_learning_kl=local_learning_kl, ) ) test_image = network[-1](test_image) else: network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv2, kernel_size=kernel_size_conv2, stride=stride_conv2, padding=padding_conv2, ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if cnn_top: list_cnn_top_id.append(len(network)) network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_conv2, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True, ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if max_pool: network.append( torch.nn.MaxPool2d( kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2, ) ) else: network.append( torch.nn.AvgPool2d( kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2, ) ) test_image = network[-1](test_image) list_other_id.append(len(network)) if use_nnmf: if p_mode_2: network.append( NNMFConv2dP( in_channels=test_image.shape[1], out_channels=number_of_output_channels_flatten2, kernel_size=(test_image.shape[2], test_image.shape[3]), convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_2, local_learning_kl=local_learning_kl, use_reconstruction=use_reconstruction, ) ) else: network.append( NNMFConv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_flatten2, kernel_size=(test_image.shape[2], test_image.shape[3]), convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_2, local_learning_kl=local_learning_kl, ) ) test_image = network[-1](test_image) else: network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_flatten2, kernel_size=(test_image.shape[2], test_image.shape[3]), ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if cnn_top: list_cnn_top_id.append(len(network)) network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_flatten2, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True, ) ) test_image = network[-1](test_image) network.append(torch.nn.ReLU()) test_image = network[-1](test_image) list_other_id.append(len(network)) if use_nnmf: if p_mode_3: network.append( NNMFConv2dP( in_channels=test_image.shape[1], out_channels=number_of_output_channels_full1, kernel_size=(test_image.shape[2], test_image.shape[3]), convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_3, local_learning_kl=local_learning_kl, use_reconstruction=use_reconstruction, ) ) else: network.append( NNMFConv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_full1, kernel_size=(test_image.shape[2], test_image.shape[3]), convolution_contribution_map_enable=convolution_contribution_map_enable, epsilon=epsilon, positive_function_type=positive_function_type, init_min=init_min, init_max=init_max, beta=beta, use_convolution=use_convolution, iterations=iterations, local_learning=local_learning_3, local_learning_kl=local_learning_kl, ) ) test_image = network[-1](test_image) else: network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_full1, kernel_size=(test_image.shape[2], test_image.shape[3]), ) ) test_image = network[-1](test_image) if cnn_top: network.append(torch.nn.ReLU()) test_image = network[-1](test_image) if cnn_top: list_cnn_top_id.append(len(network)) network.append( torch.nn.Conv2d( in_channels=test_image.shape[1], out_channels=number_of_output_channels_full1, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True, ) ) test_image = network[-1](test_image) network.append(torch.nn.Flatten()) test_image = network[-1](test_image) network.append(torch.nn.Softmax(dim=1)) test_image = network[-1](test_image) return network, list_cnn_top_id, list_other_id