pynnmf/append_input_conv2d.py

48 lines
1.1 KiB
Python

import torch
def append_input_conv2d(
network: torch.nn.Sequential,
test_image: torch.tensor,
dilation: int = 1,
padding: int = 0,
stride: int = 1,
kernel_size: list[int] = [5, 5],
) -> torch.Tensor:
mock_output = (
torch.nn.functional.conv2d(
torch.zeros(
1,
1,
test_image.shape[2],
test_image.shape[3],
),
torch.zeros((1, 1, kernel_size[0], kernel_size[1])),
stride=stride,
padding=padding,
dilation=dilation,
)
.squeeze(0)
.squeeze(0)
)
network.append(
torch.nn.Unfold(
kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride
)
)
test_image = network[-1](test_image)
network.append(
torch.nn.Fold(
output_size=mock_output.shape,
kernel_size=(1, 1),
dilation=1,
padding=0,
stride=1,
)
)
test_image = network[-1](test_image)
return test_image