46 lines
1.2 KiB
Python
46 lines
1.2 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
data = np.load("data_log_cnn_20_True_0.001_0.01_True_True_True_True.npy")
|
|
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k", label="CNN + CNN Top")
|
|
|
|
data = np.load("data_log_cnn_20_False_0.001_0.01_True_True_True_True.npy")
|
|
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k--", label="CNN")
|
|
|
|
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_True.npy")
|
|
plt.loglog(
|
|
data[:, 0],
|
|
100.0 * (1.0 - data[:, 1] / 10000.0),
|
|
"r",
|
|
label="NNMF + CNN Top (Iter 20, KL)",
|
|
)
|
|
|
|
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_True.npy")
|
|
plt.loglog(
|
|
data[:, 0],
|
|
100.0 * (1.0 - data[:, 1] / 10000.0),
|
|
"r--",
|
|
label="NNMF (Iter 20, KL)",
|
|
)
|
|
|
|
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_False.npy")
|
|
plt.loglog(
|
|
data[:, 0],
|
|
100.0 * (1.0 - data[:, 1] / 10000.0),
|
|
"b",
|
|
label="NNMF + CNN Top (Iter 20, MSE)",
|
|
)
|
|
|
|
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_False.npy")
|
|
plt.loglog(
|
|
data[:, 0],
|
|
100.0 * (1.0 - data[:, 1] / 10000.0),
|
|
"b--",
|
|
label="NNMF (Iter 20, MSE)",
|
|
)
|
|
|
|
plt.legend()
|
|
plt.xlabel("Epoch")
|
|
plt.ylabel("Error [%]")
|
|
plt.show()
|