
MN-F3
Programming

WS2024/25

Contents
Motivation
L1 – Basics: Intro, variables, input & output, lists & tuples, expressions…
L2 – Flow control: For, while; if, elif, else, match case; break, continue, pass
L3-A – Functions and Modules: how to organize your program and reuse code
L3-B – Systematic Programming and Good Programming Practice: How to
plan a program, how to solve a problem, how to avoid errors
L4 – Numpy & Matplotlib: Arrays, axes & functions, plotting & labeling
L5 – More Numpy and Files: Broadcasting, multidimensional array handling –
load, save, filenames and dictionaries
L6 – Missing Bits and Bytes: Enjoy the Sammelsurium!

Motivation
Why programming?

Why Python?

Why to learn programming
as a neuroscientist?

• Modelling and simulation
• Data analysis
• Designing and setting up

experimental hardware and
paradigms

Electrophysiology system

Faraday cage

Animal behavior system

The animal will be
placed here

Why to learn Python?

• Freely available (no costs & open source)
• Large community (most popular, about 30% "market share")
• Lots of tools for neuroscientists available (numpy, scipy, psychopy,

deeplabcut, etc. etc. etc.)
• Vectorized computations as in Matlab
• Links to different kinds of hardware easily
• Standard tool for machine learning (PyTorch)
• Easy to learn and fast to develop code




It's not named Python to
motivate you to write snake-

like code where a single
computation wraps over

multiple lines…

…it's named
Python since it's
fun to code with
and because there
are sometimes
silly changes in
new versions!

Python and all
of its extensions
(modules)

Scope of this course

Python core
functionality

What we teach you:

concepts to get started in a programming

language, methods useful in neuroscientific

context (for experimental design, simulation and

modelling, data analysis)…

Examples:

programming logics and flow control, working

with large amounts of data (numpy), displaying

and visualizing data (matplotlib)…

Organization of Lecture and Tutorials

• Lecture: introduce topics and concepts

•  …train to use these concepts in Exercises (on your own, with colleagues!)

•  …present solutions/approaches in Tutorials and show you've mastered it!

• Material provided: these slides, example code, exercise sheets, the Rotermund
Python compendium!

• Additional material: Socratica YouTube channel, online ressources!

Some remarks…

Programming is like learning to play a musical instrument…

A programming language has a grammar and a vocabulary…

Initially: separation of techniques and content, link to neuroscience in 2nd block of
lecture and subsequent Theoretical Neurosciences lecture.

QUESTIONS

and

OTHER REMARKS?

L1: Basics
What a computer does – entering &

executing a program – variables and lists,
indexing and slicing – simple input and

output – fundamental computations – not
getting lost.

What does a computer do (basically…)?

What a computer is good at:
• it performs mathematical operation very rapidly
• it shifts around large amounts of data very quickly

Typical operations:
• fetch/store data
• perform computation on data
• test condition on data &

determine what to do next

instructions,
data

keyboard,
harddisk,
camera, EEG,
Utah array…

monitor,
harddisk,
robot arm,
stimulation
electrode

Zuse Z1 (1937, mechanical)

NVidia GPU
RTX 4090
(2022)

Intel Core
i7-10700

(2020)

What is a program?

A computer program is a sequence or set of instructions in a programming
language for a computer to execute (Wikipedia).

Examples: pocket calculator, sowing seeds…

Example

Writing and executing code using VSCode and Python

VSCode: a powerful Python 'editor'
• code window (left)
• output window (bottom)
• edit/save/load (files should have .py extension)

Editor/Code Window:
• enter programme line by line, Python has no line numbers like 'Basic'
• #  Comment; \ line extension
• indentation: spaces not tabs, autoformatting (e.g. Black) cares for it…
• formatting rules enhancing readability: PEP8: https://peps.python.org/pep-0008/

Interactive execution: needs 'ipykernel' package
• interactive window (right)
• allows to execute parts of code (#%% cells)

Some nice VSCode Commands:
• TAB, SHIFT-TAB level of indent
• SHIFT+ENTER, CTRL+ENTER
• F2
• #%% [markdown]

…in Tutorials! 

https://peps.python.org/pep-0008/

Assignments

Get data into your program:
• Assignments assign the output of an expression on the r.h.s. of an equation

to a variable name on the l.h.s.
• Assignments are NOT a mathematical equation or equality!
• The r.h.s. of an assignment may only contain variable names that have been

defined before

a_number = 0

print(type(a_number))

a_second_number = 3.33

print(type(a_second_number))

a_second_number = 3.33

a_second_number = int(a_second_number)

print(type(a_second_number))

Variables have types!

int: integer
float: floating-point number
bool: Boolean truth value
str: string, series of characters
... (there are more)

int(), float(), bool(), str() can also
be used as keywords for type
conversion!

Input and output

• Display messages and results with print
• Get data from the user with input
• If you're unsure how a Python function or keyword works, get help:

help(name) for a function; or help("name") for a keyword

a = 42.42

print("Message")

print(a)

something = input()

help(print)

help("for")

is a string, you have to
type-convert if you need
an int or float!

Example

Formatting

f-strings: allow you to mix text with contents of variables/expressions

a = 42
print(f"Variable a={a}...")
print(f"Variable a={a} of type {type(a)}...")
print(f"Variable a={a} of type '{type(a)}'...")

…plus formatting specs (have a look at script for more…):

a = 42.42
print(f"a has the value {a:.03f}")

…you want to print a "{"? Just double it! There's also tab \t and newline \n .

…terms in {…} could also be expressions:

a = 42
s='fortytwo'
print(f"{a}={s}\treally {s}?\nreally {s}!")

Example

https://docs.python.org/3/library/string.html#formatspec

Arithmetics and 'math' module

a) Expressions (e.g. r.h.s. of assignment) can combine complex mathematical
operations. Some examples:

elementary maths: +, -, *, /

potentiation, modulo: **, %

b) Important mathematical functions (sin, cos, exp, …) are´defined in the
module 'math':

import math
s = math.sin(42.42)
z = s*math.exp(2)**(-4)

c) Comparisons such as ==, >, <, >=, <=, != yield logical values True, False:

4 == 5 # False
4 == 4 # True

d) Bitwise logical functions: &, |, ^, ~ (and, or, xor, not)
Example

Holding more in a variable than just one item…
…about lists and tuples and ranges!Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where
the precise degree of similarity will vary by application).

https://docs.python.org/3/library/stdtypes.html#lists

Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as
the 2-tuples produced by the enumerate() built-in). Tuples are also used for cases where an
immutable sequence of homogeneous data is needed (such as allowing storage in a set or dict
instance).

https://docs.python.org/3/library/stdtypes.html#tuple

Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific
number of times in for loops.

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Examples of lists

primes = [2, 3, 5, 7]
planets = [

"Mercury",
"Venus",
"Earth",
"Mars",
"Jupiter",
"Saturn",
"Uranus",
"Neptune",

]

hands = [
["J", "Q", "K"],
["2", "2", "2"],
["6", "A", "K"], # (Comma after the last element is optional)

]

def my_function(a):
return a

my_favourite_things = [32, "sleep", my_function]

A list can contain a mix of different types of variables:

List of lists:Simple list:

Indexing and slicing

print(planets[0])
print(planets[1])
print(planets[-2])
print(planets[-1])

Mercury
Venus
Uranus
Neptune

print(planets[0:3])
print(planets[:3])
print(planets[3:])
print(planets[1:-1])
print(planets[-3:])

['Mercury', 'Venus', 'Earth']
['Mercury', 'Venus', 'Earth']
['Mars', 'Jupiter', 'Saturn', 'Uranus',
'Neptune']
['Venus', 'Earth', 'Mars', 'Jupiter',
'Saturn', 'Uranus']
['Saturn', 'Uranus', 'Neptune']

planets = ["Mercury", "Venus", "Earth", "Mars", \
"Jupiter", "Saturn", "Uranus", "Neptune",]

Assignments

planets[3] = "Malacandra"
print(planets)

planets[:3] = ["Mur", "Vee", "Ur"]
print(planets)

planets[:4] = ["Mercury", "Venus", \
"Earth", "Mars",]

print(planets)

['Mercury', 'Venus', 'Earth',
'Mars', 'Jupiter', 'Saturn',
'Uranus', 'Neptune']

['Mur', 'Vee', 'Ur', 'Malacandra',
'Jupiter', 'Saturn', 'Uranus',
'Neptune']

['Mercury', 'Venus', 'Earth',
'Malacandra', 'Jupiter', 'Saturn',
'Uranus', 'Neptune']

planets = ["Mercury", "Venus", "Earth", "Mars", \
"Jupiter", "Saturn", "Uranus", "Neptune",]

Required: same number of elements in source (right-hand side) and target
expression (left-hand side)!

Other functions: length, sort, remove, append, pop…

print(len(planets))
print(sorted(planets))

planets.append("Pluto")
print(planets)
print(planets.pop())
print(planets)
planets.remove("Earth")
print(planets)
del planets[1:-1]
print(planets)

['Mercury', 'Venus', 'Earth', 'Mars',
'Jupiter', 'Saturn', 'Uranus',
'Neptune', 'Pluto']
Pluto

['Mercury', 'Venus', 'Earth', 'Mars',
'Jupiter', 'Saturn', 'Uranus', 'Neptune']

['Mercury', 'Venus', 'Mars', 'Jupiter',
'Saturn', 'Uranus', 'Neptune']

print(planets.index("Earth"))
print(planets.index("Pluto"))

2

ValueError: 'Pluto' is not in list

8
['Earth', 'Jupiter', 'Mars', 'Mercury',
'Neptune', 'Saturn', 'Uranus', 'Venus']

planets = ["Mercury", "Venus", "Earth", "Mars", \
"Jupiter", "Saturn", "Uranus", "Neptune",]

['Mercury', 'Neptune']

Tuples

Tuples are almost exactly the same as lists. They differ in just two ways.

a) The syntax for creating them uses parentheses instead of square brackets

t = (1, 2, 3)

b) They cannot be modified (they are immutable).

t = (1, 2, 3)
t[0] = 100

TypeError: 'tuple' object does not support item assignment

Tuples are often used for functions that have multiple return values.

Summary / Further Reading

Concepts:

• form of a programme

• variables and assignments

• mathematical operations and expressions

• input and output

• lists and tuples

Socratica Channel:
https://www.youtube.com/watch?v=bY6m6_IIN94&list=PLi01XoE8jYoh
WFPpC17Z-wWhPOSuh8Er-

The Rotermund Python Compendium:

Uploaded on StudIP!

https://www.youtube.com/watch?v=bY6m6_IIN94&list=PLi01XoE8jYohWFPpC17Z-wWhPOSuh8Er-

L2: Flow control
for, while – if, elif, else, match case –

break, continue, pass
Bremen Freimarkt simulation
for [ever]:

sim.eat(food='chips', quantity=1e7)
sim.enter(type='rollercoaster')
sim.puke()

…if not knowing how if,
why not reading what if?

https://xkcd.com

https://xkcd.com/

Flow control

b) Selection statements:

if, elif, else

match case (>= Python 3.10)

a) Iteration statements (Loops):

for loop

while loop

c) Jump statements:

break

continue

pass
d) Functions (later lecture):

def

return

lambda

Loops allow to execute code multiple times with different parameters

value = 0
print(f"Squaring {value} gives us {value**2}")
value = 1
print(f"Squaring {value} gives us {value**2}")
value = 2
print(f"Squaring {value} gives us {value**2}")
value = 3
print(f"Squaring {value} gives us {value**2}")
value = 4
print(f"Squaaeraring {value} gives us {value**2}")

Squaring 0 gives us 0
Squaring 1 gives us 1
Squaring 2 gives us 4
Squaring 3 gives us 9
Squaaeraring 4 gives us 16

Loops allow to execute code multiple times with different parameters

For loops have a value(s) that change with every iteration.

For loops have an iterable that provides these values.

for value in range(10):
print(f"Squaring {value} gives us {value**2}")

…but what about this?

for item in [42, "teddybear", (42, 17,)]:
print(f"The current item is a {item}!")

Squaring 0 gives us 0
Squaring 1 gives us 1
Squaring 2 gives us 4
Squaring 3 gives us 9
Squaring 4 gives us 16
Squaring 5 gives us 25
Squaring 6 gives us 36
Squaring 7 gives us 49
Squaring 8 gives us 64
Squaring 9 gives us 81

Indentation defines scope,

i.e. what belongs into the loop.

Loops

a) For

for iterates through an iterable, such as a range or list…

for i in range(0, 3):
print(i)

for_stmt ::= "for" target_list "in" expression_list ":" suite
["else" ":" suite]

0
1
2

for i in [0, "A", 7, "nom num"]:
print(i)

0
A
7
nom num

range(start, stop[, step])

…it also allows to specify code executed upon successful termination:

Logic blocks need to be indented.
Preferable with 4 spaces!

Very useful: enumerate!

some_list = ["duplo", "lego", "fischertechnik"]
for index, item in enumerate(some_list):

print(f"List item number {index} is '{item}'.")

You can use enumerate to iterate through a list and get in each iteration an item
and the index where this item is in a list:

List item number 0 is 'duplo'.
List item number 1 is 'lego'.
List item number 2 is 'fischertechnik'.

Loops (cont'd)

b) While

i = 0
while i < 3:

print(i)
i += 1

0
1
2

while_stmt ::= "while" assignment_expression ":" suite
["else" ":" suite]

for i in range(0, 3):
print(i)

0
1
2

same as…

Why while? It's useful in situations when the items over which to iterate are not
known, or the termination condition is not known when the loop starts.

my_number = 4
your_guess = -1
print("Guess which number I'm thinking of.")
while your_guess != my_number:

your_guess = float(input("Take a guess: "))
print("Yep, that's it!")

Flow control: if, elif and else

if allows the execution of a set of commands if an expression evaluates to "True":

if i == 1:
print("if")

elif i == 2:
print("elif branch A")

elif i == 3:
print("elif branch B")

else:
print("else -- default")

elif and else are optional.

A common form of logical comparison
can test whether an item occurs in a list:

A = 2
if A in [0, 2, 4, 6, 8]:

print("found")
else:

print("NOT found")

found

Flow control: match

For multiple case
comparisons, the new
match command is
available from Python
3.10 on…

for i in range(0, 4):
match (i):

case 0:
print("This is a 0")

case 0:
print("This is a 0 too.")

case 1:
print("This is a 1.")

case 2:
print("This is a 2.")

case _:
print(f"I don't know what to do with a {i}!")

This is a 0
This is a 1.
This is a 2.
I don't know what to do with a 3!

Flow control: pass, break, and continue

a) pass

pass is a null operation.

Nothing happens when
executed:

b) break

break terminates nearest enclosing
loop, skipping the optional else clause.
The loop control target keeps its
current value.

c) continue

continue is used in for or while, for continuing
with the next cycle of the nearest enclosing loop.

if A == B:
pass

def A(x):
pass

for A in [1, 2]:
pass

Since Python uses indents as
definition for a functional block
it needs pass for signaling an
empty functional block…

for i in range(0, 5):
if i == 2:

break
print(i) 2

for i in range(0, 5):
if i == 2:

continue
print(i)

0
1
3
4

Zu guter Letzt: there's exactly one way in Python to solve a problem!

Problem

Solution

L3-A: Functions and Modules
def, import

Code NOT using functions
and modules….

…code using functions
and modules!

Functions

Functions serve to "encapsulate" non-trivial parts of your code and make them
accessible under a new (function) name:

def my_function():
pass

def my_function():
return

def my_function():
return None==

def my_function():
return 2

Functions can have input argument(s) and output value(s), but they don't have
to. Some examples you know:

print("chnoergl…") # input only
inp = input() # output only
exit() # neither in- nor output
s = np.sin(42) # input and output

empty function…

function returning
an integer…

def my_function(a, b):
return a * b

print(my_function(a=2, b=3))

print(my_function(b=3, a=2))

print(my_function(2, b=3))

print(my_function(a=2, 3))
def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):

----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

Functions: Input arguments and return values

a) Input arguments:

Can be given as positional
arguments or keywords with a value:

b) Return values:

Multiple values can be specified;
they will be returned as a tuple:

…okay!

…okay!

…okay!

Formal
definition:

def my_function():
return 2, "A", 79, 3.1314

print(my_function())

(2, 'A', 79, 3.1314)

def my_function(a=2, b=3):
return a * b

print(my_function())
print(my_function(a=4))
print(my_function(b=5))
print(my_function(b=6, a=7))

6
12
10
42

Functions: Default values and documentation strings

c) Default values:

Can be specified by assigning a value
in the definition of a function:

d) Documentation strings

Very useful to provide help to other
users (or to you if you forgot how to use)

def my_function():
"""This is a universal
function. It does nothing."""
pass

help(my_function)

Help on function my_function in module __main__:

my_function()
This is a universal function.
It does nothing.

Modules: Basics

A module is a file containing Python definitions and statements. The file name is the
module name with the suffix .py appended. Within a module, the module’s name (as
a string) is available as the value of the global variable __name__.

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while a < n:

result.append(a)
a, b = b, a+b

return result

file fibo.py…

contains two
functions named
fib and fib2…

Modules: Import

Different ways of importing (parts of) modules:

import math # Usage of sin: result = math.sin(42)
from math import sin # Usage of sin: result = sin(42)
import math as m # Usage of sin: result = m.sin(42)
from math import sin as s # Usage of sin: result = s(42)
from math import * # Usage of sin: result = sin(42)

import fibo does not enter the names of the functions defined in fibo directly in
the current symbol table; it only enters the module name fibo there.

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

Using the module name you
can access the functions:

Pleaaaase, don't do that!!! Keep names separate!

Modules executed as scripts

When you run a Python module with python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with __name__
set to "__main__". That means that by adding this code at the end of your module:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the
code that parses the command line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

Modules in subdirectories

Example directory structure:

maindir/

+--- myprog.py
+--- subdir/

+--- fibo.py

+--- subsubdir/

+--- fibo.py

Usage in myprog.py:

Modules can be placed into (sub)directories and imported by preceding the
module's name by the name of a (sub)directory and a dot:

1 1 2 3 5 8 13
[0, 1, 1, 2, 3, 5, 8, 13]
1 1 2 3 5 8 13 21 34
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

import subdir.fibo as phebo
import subdir.subsubdir.fibo as feepo

phebo.fib(15)
print(phebo.fib2(15))
feepo.fib(42)
print(feepo.fib2(42))

Note: For efficiency reasons, each module is only imported
once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter – or, if it’s just one
module you want to test interactively, use importlib.reload(),
e.g. import importlib; importlib.reload(modulename).

L3-B: Systematic Programming and
Good Programming Practice
Flow Charts – Do's and Don't's

Systematic programming

1. Problem definition

2. Algorithmic solution

3. Division into simple(r) steps

4. Creating a flow chart (optional, might be useful!)

5. Translation of steps into commands / control instructions

6. Testing and debugging /refinement

knowledge about
what a computer can
in principle do…

knowledge about a
particular programming
language, its syntax,
capabilities and
extensions…

Problem definition and algorithmic solution

• Precise formulation of a problem in exact language and/or mathematics…

• …what goes in out, what comes out? (variables, parameters)

• What has to be done to the input to get to the desired output? (the algorithm)

Example:

Simulate a so-called ’random walk’ of a particle. A random walk describes a movement
of a particle (e.g. molecule, protein) that is determined by a random process. The
particle moves in every time step by a distance of dx, either to the left or to the right.
Both possibilities have the same probability of happening. The task for the computer is to
simulate n = 1000 trials with the particle starting at location x=0, and stop the
simulation each time the particle crosses a barrier at x = −1 or x = 1. The output of our
program shall be the mean number of steps needed to reach one barrier, calculated from
the n iterations.

In our tutorials, these remarks give contextual information to
connect programming to neuroscience. Note that understanding this
information is actually not required to solve the problem!

Division into simpler steps (can be done together with flow chart)

• Which steps have to be executed first, which later? (sequencing)

• Which steps have to be iterated several times resp. applied in a similar manner
on different quantities?

• Which steps have to be carried out dependent on a specific condition?
• Which steps demand user interaction or an informative feedback?
• Can a complex problem be partitioned into simpler blocks? (functions)
• Make sure that the solution can be found in finite steps (if possible…)

Creating a flow chart (get your thoughts organized!)

• Use different symbols for normal steps, repeated execution, conditional
execution etc. and connect them by arrows indicating sequence

• Down: normal flow, Up: repeated execution, Horizontal: different levels of
functions/subfunctions

Translation of steps into commands / control instructions

• Determine suitable data structures for holding your data, parameters, and
temporary results (scalar or vector/array? text or number, integer or float?
homogeneous data or dictionary combining diverse data types? …)

• Replace each step by one or few instructions

• Further subdivide unexpectedly complex steps

• Adhere to the syntax / grammar, use help, look at examples…

• Use functions to modularize your code, making it leaner and making its
logical structure transparent

Systematic programming

Some rules which we think are very important (in our field):

Do not reinvent the wheel (if a good wheel exists, please re-use it (*), but please please do also

understand how it works and how you mount it!)

Document your code (your own knowledge of what you cooked up will decay exponentially at a

fast rate)

Expect your code to be used by the DAU (use assert often and early, think actively about error

conditions that might occur, avoid giving your code to other users –they will only fuck it up…)

Use new variable names for everything that you define or compute on at least two
places (want to change value? There's only one place, not to overlook!)

For each (collection of) function(s) supply ample test code and prototypical examples
on how to use it

Avoid lengthy expressions, break down into simpler chunks and use temp vars
Keep your resources in mind ("640k of memory should be enough for everybody")

In larger projects, use proper version control (e.g. Github, ask Joscha!)

(*) except in cases we want you to do your own
wheel because we think you might learn something
really important!

Example: Systematic Programming and Functions

Simulation of diffusion across synaptic cleft

Figure from: K. Maksymenko, Novel algorithmic approaches
for the forward and inverse M/EEG problems, Research Gate

x
xmax

0

+dx

-dx

How long does it (on
average) take to diffuse
to postsynaptic cell?

How does this time scale
with distance to
postsynaptic cell?

End of first
Block

Die Hälfte ist
geschafft – jetzt

braucht's Übung!

L4: Numpy & Matplotlib
Vectors, Matrices and Arrays – Axes and

Functions – Plotting and Labeling

Njam-Pie: delicious, but not
capable of handling large data!

Numpy and Matplotlib

Making it available to your code:

import matplotlib.pyplot as plt

import numpy as np

• inspired by Matlab (more consistent implementation in torch)

• process large data sets with few instructions

• avoid going through single elements "by hand"

• display results nicely

DOCS: https://matplotlib.org/stable/api/index.html

DOCS: https://numpy.org/doc/stable/reference/index.html

https://matplotlib.org/stable/api/index.html
https://numpy.org/doc/stable/reference/index.html

How to represent data?

[[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]

[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]]

import numpy as np

M = np.zeros((2, 3, 4))

print(M)

N = np.zeros_like(M)

print(N)

[[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]

[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]]

a) Define array directly…

…and fill with a specific value: zeros, ones, empty…

Basic data container: type ndarray (more precisely, numpy.ndarray)

(0D), 1D, 2D, 3D, …, nD

b) Create array from a range

arange: return evenly spaced values within a given interval:

numpy.arange([start,]stop, [step,]dtype=None, *, like=None)

WARNING!!!

When using a non-integer step, such as 0.1, it is often better to use
numpy.linspace.

numpy.linspace(start, stop, num=50, endpoint=True,

retstep=False, dtype=None, axis=0)

Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

linspace: return evenly spaced numbers over a specified interval:

c) Define array by hand, or convert from list / tuple

Nesting the values into square brackets (i.e. conversion from lists of lists of lists)

a_1d = np.array([4, 5, 6])

a_2d = np.array([[4, 5], [6, 7]])

a_3d = np.array([[[4, 5], [6, 7]], [[8, 9], [10, 11]]])

Other properties good to know…

Query number of values in array 'data': data.size

Query size of dimensions in array 'data': data.shape

Query (and also specify, as optional argument on creation) data type: data.dtype

How do we 'print' what's inside the data?

…that's what we need matplotlib.pyplot for, e.g.:

plt.plot(x, y)
plt.show()

Indexing and slicing on numpy ndarrays

 A valid (single) index starts at 0 and runs until N-1
(we assume N as the size of the dimension.

 [start:stop:step]
start = 1, stop=N, step=1
results in the sequence
1,2,3,...,(N-1)

 [start:stop:1] can be shortened to [start:stop]
 [0:stop] can be shortened to [:stop]
 [start:N] can be shortened to [start:]
 B = A[:] gives you a view of A.

B has the same shape and size of A.
 Indexing can also be used on the left-hand-side of an

assignment for filling up part of an ndarray!

Examples for:

Computing with ndarrays

Mathematical operations either defined as methods…: s = a.sum()
…or defined as functions: s = np.sum(a)

Examples: sum, std, mean, var, …

Functions defined in math are usually also defined in numpy, and they perform
the corresponding operation element-wise!

Examples: sin, cos, exp, log, …

Often optional arguments can change the behaviour of numpy-
functions/meths: s_first = np.sum(a, axis=0)

Examples: axis, dtype, keepdims, …

Many fcts for linear algebra such as matrix multiplication: c = np.matmul(a, b)

Examples: matmul, dot, .T (transpose!)

If you want to perform numerical stuff which usually requires the math-module
and/or performs operation on non-scalar data, please use numpy from scratch!

Examples #1 

Basic functions in matplotlib.pyplot:

plt.plot(x, y) # plot y-vector against x-vector

plt.show() # terminate drawing and show the graph(s)

plt.figure(nr) # open figure number nr

plt.title(a_title) # give the graph a title

plt.xlim([a, b]) # set limits of horizontal axis

plt.legend(['abra', 'kadabra']) # legends for multiple funcs in one graph

plt.ylabel(a_label) # give the vertical axis a label

plt.grid() # add a grid to the graph

plt.text(x, y, a_text) # print a text a_text to coordinates x, y

Warning: all these examples can take different optional/named arguments
which control their behavior! Use help() to have a closer look…

Some more plotting stuff, just for the show!

plt.imshow(array_2d) # show 2D-array or 3D RGB image

plt.colorbar() # show colorbar, e.g. for imshow

plt.savefig("schrotty.png", dpi=100) # save figure as bitmap to "schrotty.png"
plt.savefig("pretty.pdf") # save figure as lineart to "pretty.pdf"

WARNING: Do a savefig before you do plt.show() !!!

plt.subplot(y, x, idx)
establishes a grid for having y by x
subplots and addresses subplotindexed
by idx with subsequent plot commands…

1 2 3 …

6 7 …

y=3

x=5

idx = 9
idx = (7, 13)

Examples #2 

L5: More Numpy and Files
Broadcasting, Slicing – Save, Load, Paths

A 4 by 5 Njam-Pie!

Broadcasting and Working with Multidimensional Entities

Source:
r/aiArt

https://www.itu.int/

https://www.reddit.com/r/aiArt
https://www.itu.int/

Broadcasting and Slicing: Motivation

raw EEG recording

common source signal / external noise

region of interest (ROI)

MRT image

coordinate axes

Whiteboard

Broadcasting: Basics

Matching trailing
dimensions:

array b gets 'broadcasted'
along 'missing' dimension

Non-matching trailing
dimensions:

Broadcasting not possible

Broadcasting extends arrays for mathematical and indexing operations by
replicating their contents across 'missing' dimensions (or dims with size 1):

Broadcasting: Multiple extensions

Extensions along different dimensions in both operands possible:

Use cases:

-

-

-

Is broadcasting possible?

a) write down the shapes of the two operands (arrays) below each other, flush right

b) start from the right, and check the numbers below each other:
- if one number is one (or none), this dim gets broadcasted
to the max of the two numbers

- if both numbers are above 1, they have to be equal (otherwise: error)

Broadcasting: Examples

Good:

Broken:

The rule: start from the right, and check the numbers below each other:

• if one number is one (or none), this dim gets broadcasted to the max of
the two numbers

• if both numbers are above 1, they have to be equal (otherwise: error)

Reshape and Flatten

reshape allows changing dimensions without
changing the contents.

For example, useful when reading a
multidimensional array from a linear stream
such as a file or external device…

a = np.zeros((3, 3))

SECOND-LAST
dim: ROW
dimension

LAST dim:
COLUMN
dimension

flatten makes a one-dimensional vector!

Slicing in N dimensions

N-dim is like 1-dim-slicing, but applied to several dimensions in parallel...

If one or more dimensions are not specified, all of their elements are addressed:

better, recommended since it
reminds us that there's more
than one dim: C = B_3D[1]C = B_3D[1:2, …]

C.shape is 1, 3, 2. Do you want
to get rid of dims that are 1?
Try this:

Adding and removing array dimensions/axes

numpy.newaxis inserts new dimensions,
and numpy.squeeze removes all axes with
size 1. numpy.newaxis can be replaced by
numpy.reshape.

import numpy as np

a3 = np.ones((5, 4, 3))
print(a3.shape)

a5r = np.reshape(a3, (1, 5, 1, 4, 3))
print(a5r.shape)

a5n = a3[np.newaxis, :, np.newaxis, ...]
print(a5n.shape)

a3s = a5n.squeeze()
print(a3s.shape)

a3alone = a3s[..., 2:3]
print(a3alone.shape)

a2 = a3alone.squeeze()
print(a2.shape)

a1 = a3[3:4, 1:3, 0:1].squeeze()
print(a1.shape)

(5, 4, 3)
(1, 5, 1, 4, 3)
(1, 5, 1, 4, 3)
(5, 4, 3)
(5, 4, 1)
(5, 4)
(2,)

Coordinates in multiple (array) dimensions

For displaying or working with n-dimensional arrays, it is convenient to define
proper axes:

import numpy as np
import matplotlib.pyplot as plt

nx = 70
ny = 40

x = 0.1 * np.arange(nx)
y = 0.1 * np.arange(ny)

a = np.random.rand(ny, nx)

plt.pcolor(x, y, a)
plt.show()

Coordinates in multiple (array) dimensions, continued!

If you put the coordinates into the 'right'
dimension (i.e., …z, y, x!), you can use
broadcasting to do computations over n-dims
with n vectors, avoiding to create full n-dim
arrays with numpy.meshgrid:

y = y[:, np.newaxis]

r = np.sqrt(x**2 + y**2)
plt.pcolor(x, y, r > 2.5)
plt.show()

plt.pcolor(x, y, a * (r > 2.5))
plt.show()

Views and Copies

Many slicing operations return views. Changing
contents of a variable that contains a view
changes also the 'original', source array!

What the f***?

import numpy as np

z = np.zeros((4, 4))

o = z[1:3, 1:3]
o[...] = 1

print(f"z={z}")

print(f"o and z may share memory: { \
np.may_share_memory(o, z)}")

z=[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]

o and z may share memory: True

Views and Copies, continued…

To avoid this problem, do a .copy(). Normally
mathematical operations also provide a copy
instead of just a view.

z=[[0. 0. 0. 0.]
[0. 1. 1. 0.]
[0. 1. 1. 0.]
[0. 0. 0. 0.]]
p and z may share memory: False
q and z may share memory: False

import numpy as np

z = np.zeros((4, 4))

o = z[1:3, 1:3]
o[...] = 1

print(f"z={z}")
print(f"o and z may share memory:
{np.may_share_memory(o, z)}")

p = z[1:3, 1:3].copy()
p[...] = 42
q = z[1:3, 1:3]**2
p[...] = 17

print(f"z={z}")
print(f"p and z may share memory:
{np.may_share_memory(p, z)}")
print(f"q and z may share memory:
{np.may_share_memory(q, z)}")

Storing and Retrieving Data

Magnetic drum
store storage
device, from Deuce
computer, 1955-
1964 England,
English Electric
Company Limited

Storing and Retrieving Data: a Map for the Zoo…

Different ways of storing and retrieving data

• The 'classic' way: open, read, write, close (or better, use open together with with!)
- …for texts
- …for binary formats
- …for configurations/parameter files:

json.dump(s), json.load(s)

• The unsafe way: pickle

• The Numpy way: numpy.load, numpy.save, numpy.savez

• The Matlab way: scipy.io, h5py

• The many other proprietary ways…

You will probably never need it if you
have these other, simpler methods – but
they are available as a fallback option!

 David will show you!

 Never ever!

 Today!

 David will show you!

 In the tutorials, you will
learn how to help
yourselves!

Storing and retrieving data: Numpy arrays

Storing data:

Single numpy vars are saved with numpy.save, multiple vars with numpy.savez. You
can specify under which name each variable is saved with savez, and you can
compress (losslessly) your file to save storage space with numpy.savez_compressed:

import numpy as np

a = "Some string"
b = np.eye(4000, 4000)
c = 42

file_single = "save_single" # .npy gets added...
file_multi = "save_multi" # .npz gets added...
file_multi_named = "save_multi_named"
file_multi_named_compressed = "save_multi_named_compressed"

np.save(file_single, b)
np.savez(file_multi, a, b, c)
np.savez(file_multi_named, x=a, y=b, z=c) # better, specify names
np.savez_compressed(file_multi_named_compressed, a=a, b=b, c=c)

Storing and retrieving data: Numpy arrays

Retrieving data:

You use numpy.load to load numpy vars. For single vars (stored with numpy.save) the
contents are directly provided as the return value. For multiple vars, the return value
is a handle from which the contents can be retrieved by indexing with their var
names (get a list by assessing handle.files), like in dictionaries…

b_load = np.load("save_single.npy") # needs extension in name

handle = np.load("save_multi.npz")
print(handle.files) # -> ['arr_0', 'arr_1', 'arr_2']
print(handle["arr_1"].shape)

handle = np.load("save_multi_named_compressed.npz")
print(handle.files) # -> ['x', 'y', 'z']
print(handle["b"].shape)

…better also use option 'allow_pickle=True'

…better also use option 'allow_pickle=True'

Storing and retrieving data: Taming a flood of files

Directory structures and filenames

Data on a computer is organized in a tree-like hierarchy with folders and subfolders.
This makes it possibly to easily find and access data and program code:

…except if you keep way too
many old versions and
obsolete data!

Storing and retrieving data: Taming a flood of files

Handling dirs and files and finding good names!

The modules glob, os.path, and datetime are your friends:

glob.glob(pattern) - gives a list with filenames matching pattern

os.path.join(a, b, c, …) - joins directory/file names to a full path

os.path.basename(fullpath) - gets the filename(+suffix) from a full path…

os.path.dirname(fullpath) -… gets the other part, i.e. the directory hierarchy

os.path.splitext(basename) - splits a file basename into filename and suffix

os.path.exists(fullpath) - tests if file or path exists

os.getsize(fullpath) - gets size of file

datetime.datetime.now() - gets current time, as prerequisite for constructing paths

Storing and
retrieving data:
Taming a flood of
files

Examples:

import os
import glob
import datetime

everything = glob.glob("./*")
for item in everything:

print(item)

d = "dir"
s = "subdir"
f = "filename"
x = ".py"
fullname = os.path.join(d, s, f)+x
print(f"Full filename: {fullname}")

basename = os.path.basename(fullname)
print(f"Basename: {basename}")
print(f"Dirname: {os.path.dirname(fullname)}")
print(f"Filename, Suffix: {os.path.splitext(basename)}")

file = "programming_lecture_05.py"
print(f"File {file} exists? {os.path.exists(file)}!")
print(f"Its size is {os.path.getsize(file)} bytes...")

Examples

continued:

import datetime

d = datetime.datetime.now()
for animal in ['Botox', 'Versace', 'Fritz', 'DonkeyKong']:

for electrode in range(17):
recdate = f"{d:%Y-%h-%d_%H%M%S}"
file = f"Monkey{animal}_Elec{electrode:03d}_RecDate-{recdate}"
print(f"Saving data under {file}...")

Saving data under MonkeyBotox_Elec007_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec008_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec009_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec010_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec011_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec012_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec013_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec014_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec015_RecDate-2023-Dec-03_133618...
Saving data under MonkeyBotox_Elec016_RecDate-2023-Dec-03_133618...
Saving data under MonkeyVersace_Elec000_RecDate-2023-Dec-03_133618...
Saving data under MonkeyVersace_Elec001_RecDate-2023-Dec-03_133618...
Saving data under MonkeyVersace_Elec002_RecDate-2023-Dec-03_133618...
Saving data under MonkeyVersace_Elec003_RecDate-2023-Dec-03_133618...
Saving data under MonkeyVersace_Elec004_RecDate-2023-Dec-03_133618...

L6: Missing bits and bytes
Enjoy the Sammelsurium

One bit… …bite!

Missing bits and bytes…

a) Indexing with arrays

Numpy arrays (…or lists) with integer values can be used inside rectangular
brackets […] to address a subset of elements. Here a few simple examples:

numpy.where (with one arg) gives index list in a tuple where ndarray contents meet a
logical expression (see also the more elaborate usage with three args):

a = np.arange(10, 0, -1)
indices = [3, 5, 3]
print(a[indices])

[7 5 7]

spiketrain = np.array([0, 1, 0, 0, 0, 4, 1, 0, 0])
dt = 0.010
attention, returns tuple!
spikes = np.where(spiketrain > 0)
print(f"Neuron fired at time: {spikes[0]*dt}")
print(f"Observed activities were:
{spiketrain[spikes]}")

Neuron fired at time:
[0.01 0.05 0.06]
Observed activities were:
[1 4 1]

Missing bits and bytes…

If two (or more) index arrays are used to select from two (or more) different
dimensions, the resulting selection pairs the broadcasted indices in these
dimension (i.e., the result is not every combination of the elements in the two
index sets, aka Matlab style).

[[First dim],[Second dim]

(
0
,
0
)

(
1
,
1
)

(
2
,
2
)

paired indices

selected values

0,
1,
2,

0 1 2

, [… more dims if your array has them]]

…errors are punished via exceptions

Missing bits and bytes…

If n-dimensional index arrays in combination with slices/colon are used, the
resulting selection and dimensions of the result can be quite difficult to
imagine (see David's Compendium for examples…)

So, what about this example?

a = np.reshape(np.arange(100), [10, 10])

i = np.arange(10)
j = np.arange(10)

print(a[i, j])

i = np.arange(10)
j = np.arange(10)[:, np.newaxis]

print(a[i, j])

[0 11 22 33 44 55 66 77 88 99]

[[0 10 20 30 40 50 60 70 80 90]
[1 11 21 31 41 51 61 71 81 91]
[2 12 22 32 42 52 62 72 82 92]
[3 13 23 33 43 53 63 73 83 93]
[4 14 24 34 44 54 64 74 84 94]
[5 15 25 35 45 55 65 75 85 95]
[6 16 26 36 46 56 66 76 86 96]
[7 17 27 37 47 57 67 77 87 97]
[8 18 28 38 48 58 68 78 88 98]
[9 19 29 39 49 59 69 79 89 99]]

Missing bits and bytes…

b) Preventing reinventing

If you have a particular, well-defined mathematical/algorithmic task for a numpy ndarray,
check out the documentation!

For example, you might find useful.

numpy.flip - reverses order(s) of ndarray dimension(s)

numpy.roll - roll ndarray with periodic boundary condition(s)

numpy.tile - take an ndarray and stitch it into a tile pattern along several dims

numpy.pad - pad your ndarray from the left and right (or up and down)

numpy.concatenate - concatenate ndarray along some dimension

Missing bits and bytes…

c) Dictionaries

Dictionaries are extremely useful to hold data collections which consist of items
of different sizes and/or types. Every member of a dictionary has a name called
key. These members can be addressed by giving the key in quotes as an index,
similar to accessing the data in a numpy .npz file:

{"one": 1, "two": 2, "three": 3}

a = dict(one=1, two=2, three=3)

b = {'one': 1, 'two': 2, 'three': 3}

c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))

d = dict([('two', 2), ('one', 1), ('three', 3)])

e = dict({'three': 3, 'one': 1, 'two': 2})

f = dict({'one': 1, 'three': 3}, two=2)

Missing bits and bytes…

For working with dictionaries, plenty methods are available (see Compendium).
We mention only two here, one for getting the keys, and the other for
retrieving the corresponding values (useful for looping over dicts):

dishes = {"eggs": 2, "sausage": 1, "bacon": 1, "spam": 500}

keys = dishes.keys()

values = dishes.values()

print(list(keys))

print(list(values))

print(dishes["eggs"])

['eggs', 'sausage', 'bacon', 'spam']

[2, 1, 1, 500]

2

for key in dishes.keys():

print(f"{key} {dishes[key]}")

eggs 2
sausage 1
bacon 1
spam 500

Missing bits and bytes…

d) Module json

json is a wonderful module for reading/writing dictionaries holding a collection of
parameters (e.g. for a simulation, a configuration file, etc.). The output is human-
readable and can be interpreted by many other programs or programming tools!

https://davrot.github.io/pytutorial

Binary data

Some information in case you have to handle
binary data – also useful if you are working
with specific hardware in the lab (e.g.
recording devices, controllers such as Arduino):

Everything is a sequence of 0's and 1's (i.e.
True/False)

8 bits is a byte (int8: -128…127). Large integers
need more bytes.

Order matters, both within numbers
(endianness)…

Missing bits and bytes…

e) When hardware matters…

…

Missing bits and bytes…

Binary data (continued)

…or across numbers (arrays)

Floats represented as mantissa and exponent:
e.g. 42.42 = 4242*10^-2

Numbers have a certain range: e.g. uint8 between 0 and 255

Numbers have a certain precision: e.g. uint8 has precision 1

 rounding and range errors might occur!

Floating-point arithmetic:
https://en.wikipedia.org/wiki/Floating-point_arithmetic

Endianness:
https://en.wikipedia.org/wiki/Endianness

Binary numbers:
https://en.wikipedia.org/wiki/Binary_number

Row- and column major ordering:
https://en.wikipedia.org/wiki/Row-_and_column-major_order

a = np.zeros((3, 3))

SECOND-LAST
dim: ROW
dimension

LAST dim:
COLUMN
dimension

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Row-_and_column-major_order

Missing bits and bytes…

f) Storing and retrieving data: Matlab

Matlab files occur in different versions. You might have to use different tools:

- for Matlab <= 7.2 use scipy.io: loadmat, savemat, whosmat

- from Matlab 7.3 on, data is conveniently stored in the HDF format,
https://www.hdfgroup.org/solutions/hdf5/
Here you can use the HDF module h5py.

https://www.hdfgroup.org/solutions/hdf5/

Missing bits and bytes…

f) Need a fancy Excel? import pandas!

Missing bits and bytes…

g) Error handling and debugging (try/except/finally)

h) Type annotations

i) Variable scope and namespaces

j) Classes

out!

Namespaces…

from Mikhail Raevskiy: Python’s Type
Annotations — Why You Always Should Use It.

Classes…

End of
second Block

You're now a master
of nested loops!

