
Topic #1
Advanced Programming Concepts

What is it?

Type annotations specify which type a variable is.

It‘s optional, but very useful!

Type annotations

Example:

What is it good for?

PEP 484 – Type Hints (29-Sep-2014):

“This PEP aims to provide a standard syntax for type annotations, opening up Python code to easier
static analysis and refactoring, potential runtime type checking, and (perhaps, in some contexts) code
generation utilizing type information.

Of these goals, static analysis is the most important. This includes support for off-line type checkers
such as mypy, as well as providing a standard notation that can be used by IDEs for code completion
and refactoring.

[…]

It should also be emphasized that Python will remain a dynamically typed language, and the authors
have no desire to ever make type hints mandatory, even by convention.”

David’s redefinition:

• It is a part of your automatic documentation (like with meaningful variable names). If

another person gets your source code they understand it easier.

• Your editor might thank you. Do to some new features in Python 3.10, the modern

editors that do syntax highlighting and error checking have a harder time to infer what

you mean. The more it need to think about what you mean, the slower your editor

might get or even fail to show you syntax highlighting.

• Static code analysis is really helpful. It showed me any problems ahead that I would

have figured out the hard way otherwise.

• Packages like the just-in-time compiler numba can produce better results if you can tell

it what the variables are.

When and how do we do it?

…mostly when we introduce new variables or define functions or classes:

Common types

Simple types:

Variables with different types:

Generic types:

…could also be explicit list

with ‚or‘ separators…

Functions, more complex types…

More information:

https://davrot.github.io/pytutorial/python_basics/python_typing/

https://davrot.github.io/pytutorial/python_basics/python_typing/

Classes

What is a class?

A class is a container for data (attributes) and functions (methods). They bundle

properties of ‚objects‘ and actions that can be performed with/on them.

Classes help to modularize and organize your code even more than functions.

Class hierarchies are useful for re-using code which is common for different ‚objects‘

Dataclasses are specific classes in Python intended to represent data that ‚belongs

together‘.

Vehicle:
wheels: int
speed: float
accelerate(speed: float)
stop()

Car(Vehicle):
passengers: int
board(nrpass: int)

Bus(Vehicle):
passengers: int
routenr: int
intake: float
board(nrpass: int)

Petrol(Car):
litres: float
fill(litres: float)

Electric(Car):
kwh: float
charge(kwh: float)

Hybrid(Petrol, Electric):

Truck(Vehicle):
company: str
weight: float
load(weight: float)

class name

class
method

class
attribute

inheritance

wheels: int
speed: float
passengers: int
litres: float
kwh: float
accelerate(speed: float)
stop()
board(nrpass: int)
fill(litres: float)
charge(kwh: float)

Example

parent class /
superclass

child class /
subclass

a) Defining and instantiating a class:

b) Including and setting attributes (variables):

please don‘t initialize
in attribute section!

c) Including and using methods (functions):

Basic usage

Inheritance

a) adding

b) replacing

c) multiple inheritance

What else?

There are special methods for certain purposes:

• __init__: called always when a class is

instantiated. Good for initalizing and setting up

a meaningful state for a class instance.

• __str__: called by str(object) and the built-in

functions format() and print() to compute the

“informal” or nicely printable string

representation of an object. See also __repr__

for the built-in function repr().

• super(): refers to the parent class. Good to call

functions from that class. Example:

More information:

https://davrot.github.io/pytutorial/python_basics/class/

https://davrot.github.io/pytutorial/python_basics/class/

Dataclasses

The dataclass is very similar to normal classes, but it requires type annotations

thus serving a good programming style. You have to import from dataclasses

and use a decorator @dataclass when you define a dataclass:

there will be an error
without these
annotations!

A dataclass has an automatic

__init__() method which can be

used to populate the attributes…

Further Features I

• default_factory can be used to
specify automatic generation of
default values.

TestClassA(name='', number_of_electrodes=0,
dt=0.0, sample_rate_in_hz=0.0)

Output:

Further Features I

• defaults can also be specified in the class definiton
(please do not do this to mutables!)

• attributes can be spared from initialization

• attributes can explicitly be specified as keywords

• __post_init__() if you

have to do some init of

your own…

• __str__() for a nice

printout!

Why dataclasses?

• putting data together

into meaningful

containers…

• appropriate type

handling…

• versatile and safe

initialization methods…

• makes comparing data

sets easy…!
…compare everything …compare part

More information:

https://davrot.github.io/pytutorial/python_basics/dataclass/

https://davrot.github.io/pytutorial/python_basics/dataclass/

Aspects:

Catch me if you can!

• syntax errors

• logical errors

• data inconsistencies

• exceptions

• inadequate usage or user input

• …

Assert

Use it often to make your code safe to use, or to discover inconsistencies in input data!

Assert checks if a condition is true. If not, it issues and error and stops program
execution. Example:

import numpy as np

def solve_quadratic(a: float, b: float, c: float) -> tuple[float, float]:
x1 = (+np.sqrt(-4*a*c+b**2)-b)/2*a
x2 = (-np.sqrt(-4*a*c+b**2)-b)/2*a
return x1, x2

solve_quadratic("A", "B", "C")

import numpy as np

def solve_quadratic(a: float, b: float, c: float) -> tuple[float, float]:

assert isinstance(a, float), "argument 'a' must be float!"
assert isinstance(b, float), "argument 'b' must be float!"
assert isinstance(c, float), "argument 'c' must be float!"
assert a != 0, "argument a must be non-zero, otherwise it's not a quadratic equation!"

sqrt_arg = -4*a*c+b**2
assert sqrt_arg >= 0, "root argument must be positive for non-imaginary solutions!"

x1 = (+np.sqrt(-4*a*c+b**2)-b)/2*a
x2 = (-np.sqrt(-4*a*c+b**2)-b)/2*a
return x1, x2

Try … Except … Else … Finally …

Errors need not terminate your program. Each error raises an exception, and
you can catch that exception and handle it properly!

Example for different exceptions…

…and example for handling an exception nicely:

General form:

try this piece of code…

…if the specified exception
occurred, execute this piece of
code (‚error handling‘)…

…otherwise, execute this piece of code. You
can put code here which runs only correctly
when the exception did not occur…

…in any case, execute this piece of code,
irrespectively of errors having occurred/not occurred
(‚clean-up‘). When an unhandled exception
occurred, execution stop after this code!

General form, example:

for i in range(n_files):
try:

open file[i] for read
read neural activity into temp array
normalize temp array by its sum

except OSError:
assign None to data[i]

else:
assign temp array to data[i]

finally:
close file if open

print("Successfully read existing data files...")

everything
is okay!

file does not exist,
or is corrupt!

division by
zero occurs!

STOP!

continue… continue…

Possible exceptions…

…and you can define
your own!

…
u

se
th

o
se

!

Exceptions have associated information in their attributes

Raising exceptions

When you determine that something goes

wrong, you can yourself raise an exception…

…either a matching, predefined one

…or a newly defined exception…

Using the debugger

Interactive
demonstration…

The VSCode debugger lets you follow, monitor, and manipulate the

execution of program code…

Examples of actions possible:

- step over, step in, step out

- continue

- breakpoints, conditional breakpoints, function breakpoints

- inspection and change of variables

- monitoring

- …

More information:

https://davrot.github.io/pytutorial/workflow/vscode_debug/
https://davrot.github.io/pytutorial/python_basics/exceptions/
https://davrot.github.io/pytutorial/python_basics/assert/

https://davrot.github.io/pytutorial/workflow/vscode_debug/
https://davrot.github.io/pytutorial/python_basics/exceptions/
https://davrot.github.io/pytutorial/python_basics/assert/

