Topic #2

Numerical analysis and symbolic computation

Introduction

What is it? Which tools can we use?

Numerical analysis → scipy

Symbolic computation \rightarrow sympy

Background info – David's compendium reloaded!

https://davrot.github.io/pytutorial/

Topics:

- Sympy
- Numerical Integration, Differentiation, and Differential Equations

Which mathematical problems are we interested in?

- Solving equations (only symbolic)
- Integrals over functions
- Derivatives of functions
- Solving differential equations

Numerical solutions will (almost) always be approximations!

- Precision is limited
- Range is limited
- Algorithm is approximating
- Errors can accumulate dramatically (stability of algorithms)

Examples of errors:

- Multiplication, one decimal place: 2.5 * 2.5 = 6.25
- Addition, 8-bit unsigned int: 200+200 = 400
- Euler integration of ODE (Whiteboard)

Notation:

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} + O(\Delta x^k)$$

...means, if one reduces Δx by a factor of 2, error will reduce by factor 2k ...O(Δx^3): reduce Δx by 2, error will reduce by factor $2^3 = 8$

... $O(\Delta x)$. Teduce Δx by z, error will reduce by factor $z = \delta$

...above example: k=1, approximation is not very good or requires very small Δx

Integrals over functions (,quadrature')

Numerical methods

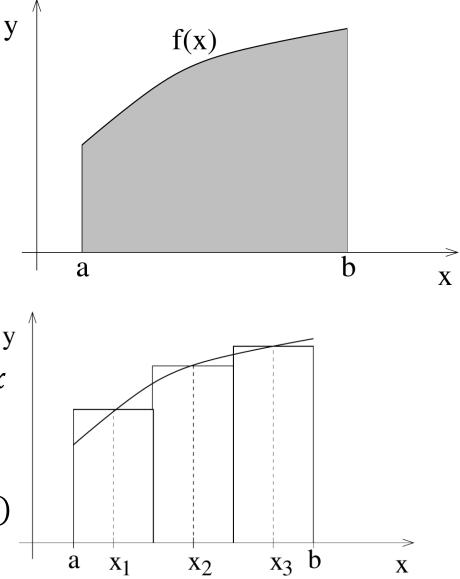
Integral = area under curve
$$F(a,b) = \int_a^b f(x)dx$$

 $F(a,b) \approx \sum_{i=1}^{N} f(x_i) \Delta x$

Approximate area by many small boxes, e.g. by **midpoint rule**:

→ Live coding!

Error:
$$-\frac{\Delta x}{24} (f'(b) - f'(a)) + O(\Delta x^4)$$



 $-\Delta x$ -

Other rules:

Trapezoidal rule:

$$F(a,b) \approx \frac{1}{2} (f(x_1) + f(x_N)) \Delta x + \sum_{i=2}^{N-1} f(x_i) \Delta x$$

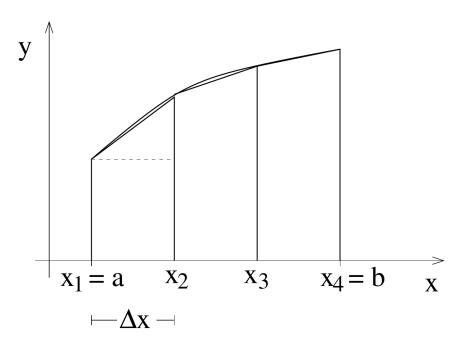
Error: $\frac{\Delta x}{12} (f'(b) - f'(a)) + O(\Delta x^4)$

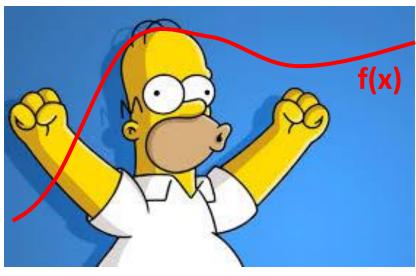
worse than midpoint!

Simpson's rule: approximate by parabolas

→ Whiteboard

Error: $O(\Delta x^4)$





Python tools

Numerical methods:

```
scipy.integrate.quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08,
limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50, complex_fu
nc=False)[source]
```

→ Live coding!

Symbolic Methods

We will use module sympy.

For symbolic operations (i.e., without concrete numbers), we have to **declare** variables/symbols (and later functions...).

For mathematical functions such as cos(...), use the sympy equivalents (not from math or numpy modules!)

```
import sympy
x, y = sympy.symbols("x y")
y = sympy.integrate(sympy.cos(x), x)
print(y) # -> sin(x)
```

For **definite integrals**, we can specify boundaries a and b by **creating a tuple** (x, a, b) for the second argument.

The solution can be **evaluated** by using the methods .subs(variable, value) to substitute a value for a variable and .evalf() to get a numerical output.

→ Live coding!

"Genug für heute?"

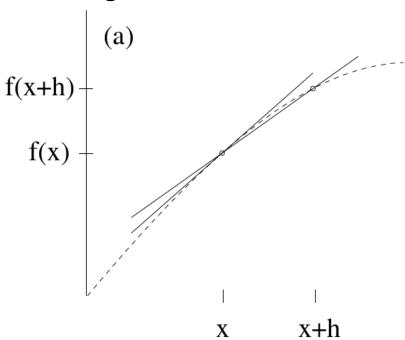
https://davrot.github.io/pytutorial/sympy/intro/https://davrot.github.io/pytutorial/numpy/7/

https://davrot.github.io/pytutorial/numpy/8/

Differentiation of functions

Numerical methods:

right-sided differentiation



$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Example live-coding: integration and differentiation, stability and instability

Symbolic methods:

For differentiation, the corresponding command is diff:

```
import sympy
x, y = sympy.symbols("x y")

y = sympy.diff(sympy.sin(x) * sympy.exp(x), x)
print(y) # -> exp(x)*sin(x) + exp(x)*cos(x)
```

Integration of differential equations

Differential quotient approximated by finite difference, like in previous example.

Solution constructed by considering the following aspects:

Whiteboard!

- What do we want to know, what is known?
- Where do we start? → Initial value problem...
- How far do we step? → Smaller than fastest timescale implies maximum step size

$$\frac{dx}{dt} = f(x,t) \text{ with } x(t_0) = x_0 \rightarrow \text{Euler: } x(t + \Delta t) = x(t) + \Delta t f(x(t),t) + O(\Delta t^2)$$

Warning:

- differentiation/integration of functions can be performed in parallel,
- differential equations require an iterative solution which can not be parallelized!

What about systems of differential equations?

...just solve them in parallel (see previous slide)

Whiteboard!

Higher-order methods

Idea: approximate differential quotient more precisely...

Solution (Runge-Kutta 2nd order): → Whiteboard

• Go ahead with Euler by half of the stepsize...

$$x_{mid}(t + \Delta t/2) = x(t) + \Delta t/2 f(x(t), t)$$

...use slope at that position for an Euler with the full stepsize.

$$x(t + \Delta t) = x(t) + \Delta t f(x_{mid}(t + \Delta t/2), t + \Delta t/2) + O(\Delta t^3)$$

This idea can be extended, for example to obtain the **Runge-Kutta scheme of order 4**... In addition, the **stepsize** Δt **can be adapted** by comparing errors made by a scheme of order N and scheme of order N+1 (e.g. "**Runge-Kutta 45**")

Python Tools

Numerical methods:

scipy.integrate.solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,
events=None, vectorized=False, args=None, **options)

→ Live coding

	'RK45' (default)	Explicit Runge-Kutta method of order 5(4). The error is controlled assuming accuracy of the fourth-order method, but steps are taken using the fifth-order accurate formula (local extrapolation is done). A quartic interpolation polynomial is used for the dense output. Can be applied in the complex domain.
	'RK23'	Explicit Runge-Kutta method of order 3(2). The error is controlled assuming accuracy of the second-order method, but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense output. Can be applied in the complex domain.
Solvers:	'DOP853'	Explicit Runge-Kutta method of order 8. Python implementation of the "DOP853" algorithm originally written in Fortran. A 7-th order interpolation polynomial accurate to 7-th order is used for the dense output. Can be applied in the complex domain.
	'Radau'	Implicit Runge-Kutta method of the Radau IIA family of order 5. The error is controlled with a third-order accurate embedded formula. A cubic polynomial which satisfies the collocation conditions is used for the dense output.
	'BDF'	Implicit multi-step variable-order (1 to 5) method based on a backward differentiation formula for the derivative approximation. A quasi-constant step scheme is used and accuracy is enhanced using the NDF modification. Can be applied in the complex domain.
	'LSODA'	Adams/BDF method with automatic stiffness detection and switching. This is a wrapper of the Fortran solver from ODEPACK.

Symbolic methods:

In addition to declaring variables, you need...

...to declare functions (for the solution we are looking for)

...to define the (differential) equation

...and the **command dsolve** for (trying to) solve the DEQ:

```
import sympy
# Undefined functions
f = sympy.symbols("f", cls=sympy.Function)
x = sympy.symbols("x")
diffeq = sympy.Eq(f(x).diff(x, x) - 2 * f(x).diff(x) + f(x), sympy.sin(x))
print(diffeq) # \rightarrow Eq(f(x) - 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)), sin(x))
result = sympy.dsolve(diffeq, f(x))
print(result) # \rightarrow Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
```

Symbolic methods, cont'd...

- For including initial conditions, dsolve has the optional argument ics.
- With lambdify, You can convert the RHS of the solution to a normal numpy function:
- Query the new function as to which arguments it takes, and in which order (import inspect for that purpose)

→ Live coding

```
result = sympy.dsolve(diffeq, f(x))
symbols = list(result.rhs.free symbols)
f = sympy.lambdify(symbols, result.rhs, "numpy")
print("The arguments of the result:")
print(inspect.getfullargspec(f).args)
print("The source code behind f:")
print(inspect.getsource(f))
```

What about partial differential equations?

For example, the cable equation:

→ Whiteboard

$$\frac{\partial V(t,x)}{\partial t} = a \frac{\partial^2 V(t,x)}{\partial x^2} + bV(t,x) + I_{ext}(t,x)$$

More information:

https://davrot.github.io/pytutorial/sympy/intro/https://davrot.github.io/pytutorial/numpy/7/

https://davrot.github.io/pytutorial/numpy/8/