Topic #2

Numerical analysis and symbolic computation

Introduction

What is it? Which tools can we use?
Numerical analysis - scipy
Symbolic computation - sympy

Background info — David‘s compendium reloaded!

https://davrot.github.io/pytutorial/

Topics:

* Sympy
* Numerical Integration, Differentiation, and Differential Equations

https://davrot.github.io/pytutorial/

Which mathematical problems are we interested in?

* Solving equations (only symbolic)
* Integrals over functions
* Derivatives of functions

* Solving differential equations

Numerical solutions will (almost) always be approximations!

* Precision is limited
* Range is limited
e Algorithm is approximating

* Errors can accumulate dramatically (stability of algorithms)

Examples of errors:

* Multiplication, one decimal place: 2.5 * 2.5 =6.25
e Addition, 8-bit unsigned int: 200+200 = 400
* Eulerintegration of ODE (= Whiteboard)

Notation:

Fay = LEHEIT@

...means, if one reduces Ax by a factor of 2, error will reduce by factor 2k
...O(Ax3): reduce Ax by 2, error will reduce by factor 23 =8

...above example: k=1, approximation is not very good or requires very small Ax

Integrals over functions (,quadrature’)

Numerical methods

b
Integral = area under curve F(a,b) = j f(x)dx
a

Approximate area by

many small boxes, e.g.

by midpoint rule:

- Live coding!

Ax
Error: ——

24

y

N
Fla,b) ~) flx)bx
i=1

(f'(b) — f'(a)) + 0(Ax*)

f(x)

a Xi
H—AX —

X2

X3b

Other rules:

Trapezoidal rule:

N-1
Fab) ~ 5 (f(a) + fG)bx + Y fOxix
[=2

Error: ax '"(b) — f’(a)) + 0(Ax*h)

worse than midpoint!

Simpson‘s rule: approximate by parabolas

- Whiteboard

Error: 0(Ax*)

/
//
Xj=a X2 X3 X4=b
—AX —

Python tools

Numerical methods:

scipy.integrate.quad(func, a, b, args=(), full output=0, epsabs=1.4%e-08, epsrel=1.45%e-08,
1imit=50, points=None, welght=None, wvar=None, wopts=None, maxpl=50, limlst=50, complex fu

nc=False) [source]

- Live coding!

Symbolic Methods

We will use module sympy.

For symbolic operations (i.e., without concrete numbers), we have to declare
variables/symbols (and later functions...).

For mathematical functions such as cos(...), use the sympy equivalents (not
from math or numpy modules!)

lmport sympy For definite integrals, we can specify boundariesa and b

by creating a tuple (x, a, b) for the second argument.
X, ¥ = sympy.symbols("x yv")
The solution can be evaluated by using the methods

e e e .subs(variable, value) to substitute a value for a variable
print(y) # -> sin(x) and .evalf() to get a numerical output.

- Live coding!

,aenug fur heute?”

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

Example live-coding:

Differentiation of functions integration and
differentiation,
Numerical methods: stability and instability

right-sided differentiation
(a)

f(x+h) A

f(x) +

fx+h)—f(x)
h

flx) = +0(h)

Symbolic methods:

For differentiation, the corresponding command is diff:

import sympy
¥, Y = sympy.symbols("x yv")

y = sympy.diff(sympy.sin(x) * sympy.exp(x), X)

print(y) # —-> exp(x)*sin(x) + exp(x) *cos(x)

Integration of differential equations

Differential quotient approximated by finite difference, like in previous example.
Solution constructed by considering the following aspects: = Whiteboard!

* What do we want to know, what is known?

 Where do we start? = Initial value problem...

 How far do we step? = Smaller than fastest timescale implies maximum step size

dx

i f(x,t) with x(t)) =x¢9 > Euler: x(t + At) = x(t) + At f(x(t),t) + 0(At?)
Warning:

 differentiation/integration of functions can be performed in parallel,

» differential equations require an iterative solution which can not be parallelized!

What about systems of differential equations?

...just solve them in parallel (see previous slide) = Whiteboard!

Higher-order methods

Idea: approximate differential quotient more precisely...
Solution (Runge-Kutta 2nd order): - Whiteboard
 Go ahead with Euler by half of the stepsize...

Xmig(t +At/2) = x(t) + At/2 f(x(t),t)

* ..use slope at that position for an Euler with the full stepsize.

x(t + At) = x(t) + At f(x,,;4(t + At/2),t + At/2) + O(At3)

This idea can be extended, for example to obtain the Runge-Kutta scheme of order 4...

In addition, the stepsize At can be adapted by comparing errors made by a scheme of
order N and scheme of order N+1 (e.g. ,,Runge-Kutta 45“)

Python Tools

Numerical methods:

scipy.integrate.solve ivp(fun, t span, y0, method="'RK43', t eval=None, dense output=False,

events=None, wvectorized=False, args=None, **options)

- Live coding

‘RK45’ (default) Explicit Runge-Kutta method of order 5(4). The error is controlled assuming accuracy of the fourth-order method,
but steps are taken using the fifth-order accurate formula (local extrapolation is done). A quartic interpolation
polynomial is used for the dense output. Can be applied in the complex domain.

‘RK23’ Explicit Runge-Kutta method of order 3(2). The error is controlled assuming accuracy of the second-order method,
but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic Hermite polynomial
Is used for the dense output. Can be applied in the complex domain.

SO IVe rs: ‘DOP853 Explicit Runge-Kutta method of order 8. Python implementation of the “DOP853” algorithm originally written in
Fortran. A 7-th order interpolation polynomial accurate to 7-th order is used for the dense output. Can be applied in
the complex domain.

‘Radav’ Implicit Runge-Kutta method of the Radau lIA family of order 5. The error is controlled with a third-order accurate
embedded formula. A cubic polynomial which satisfies the collocation conditions is used for the dense output.
‘BDF’ Implicit multi-step variable-order (1to 5) method based on a backward differentiation formula for the derivative

approximation. A guasi-constant step scheme is used and accuracy is enhanced using the NDF modification. Can
be applied in the complex domain.

‘LSODA’ Adams/BDF method with automatic stiffness detection and switching. This is a wrapper of the Fortran solver from
ODEPACK.

Symbolic methods: In addition to declaring variables, you need...
...to declare functions (for the solution we are looking for)
...to define the (differential) equation

...and the command dsolve for (trying to) solve the DEQ:

import sympy

Undefined functions
=1

f = sympy.symbols("f", cls=sympy.Function)

¥ = sympy.symbols ("x")

diffeq = sympy.Eg(f(x).diff(x, x) - 2 * £(x).diff(x) + £(x), sympy.sin(x))
print (diffeq) # -> Eq(f(x) - 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)), sin(x))

result = sympy.dsolve(diffeq, f(x))

rint (result) # —> Eg(f(x) (C1 + C2%x) *exp(x) + cos(x)/Z2)
1 , i

Symbolic methods, cont‘d...

For including initial conditions,
dsolve has the optional
argument ics.

With lambdify, You can convert
the RHS of the solution to a
normal numpy function:

Query the new function as to
which arguments it takes, and in
which order (import inspect for
that purpose)

-> Live coding

result = sympy.dsolve (diffeq, f(x))
symbols = list(result.rhs.free symbols)

f = sympy.lambdify(symbols, result.rhs,

print ("The arguments of the result:")
print (inspect.getfullargspec(f) .args)
print ("The source code behind f:")

(

print (inspect.getsource (£f))

”I‘_'Jmpy" ::I

What about partial differential equations?

For example, the cable equation: - Whiteboard

oV (t,x) a82V(t, T)

5 — g FOV(E2) + Lt)

More information:

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

