
Topic #2
Numerical analysis and symbolic computation

What is it?

Numerical analysis

Symbolic computation

Which tools can we use?

 scipy

 sympy

Introduction

Background info – David‘s compendium reloaded!

https://davrot.github.io/pytutorial/

Topics:

• Sympy
• Numerical Integration, Differentiation, and Differential Equations

https://davrot.github.io/pytutorial/

Which mathematical problems are we interested in?

• Solving equations (only symbolic)

• Integrals over functions

• Derivatives of functions

• Solving differential equations

Numerical solutions will (almost) always be approximations!

• Precision is limited

• Range is limited

• Algorithm is approximating

• Errors can accumulate dramatically (stability of algorithms)

Examples of errors:

• Multiplication, one decimal place: 2.5 * 2.5 = 6.25

• Addition, 8-bit unsigned int: 200+200 = 400

• Euler integration of ODE (Whiteboard)

𝑓‘(𝑥) =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
+ 𝑂(∆𝑥𝑘)

Notation:

…means, if one reduces ∆x by a factor of 2, error will reduce by factor 2k

…O(∆x3): reduce ∆x by 2, error will reduce by factor 23 = 8

…above example: k=1, approximation is not very good or requires very small ∆x

Numerical methods

Integral = area under curve

Integrals over functions (‚quadrature‘)

𝐹 𝑎, 𝑏 =
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Approximate area by

many small boxes, e.g.

by midpoint rule: 𝐹 𝑎, 𝑏 ≈

𝑖=1

𝑁

𝑓 𝑥𝑖 ∆𝑥

−
∆𝑥

24
𝑓′ 𝑏 − 𝑓′ 𝑎 + 𝑂(∆𝑥4)Error:

 Live coding!

Other rules:

Trapezoidal rule:

𝐹 𝑎, 𝑏 ≈
1

2
𝑓(𝑥1 + 𝑓(𝑥𝑁))∆𝑥 +

𝑖=2

𝑁−1

𝑓 𝑥𝑖 ∆𝑥

𝑂(∆𝑥4)

Error:

Simpson‘s rule:

−
∆𝑥

12
𝑓′ 𝑏 − 𝑓′ 𝑎 + 𝑂(∆𝑥4)

f(x)approximate by parabolas

Error:

worse than midpoint!

Whiteboard

Python tools

Numerical methods:

 Live coding!

Symbolic Methods

We will use module sympy.

For symbolic operations (i.e., without concrete numbers), we have to declare

variables/symbols (and later functions…).

For mathematical functions such as cos(…), use the sympy equivalents (not

from math or numpy modules!)

For definite integrals, we can specify boundaries a and b

by creating a tuple (x, a, b) for the second argument.

The solution can be evaluated by using the methods

.subs(variable, value) to substitute a value for a variable

and .evalf() to get a numerical output.

 Live coding!

„Genug für heute?“

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

Differentiation of functions
Example live-coding:

integration and

differentiation,

stability and instability

right-sided differentiation

Numerical methods:

centered differentiation

𝑓′ 𝑥 =
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
+ 𝑂(ℎ) 𝑓′ 𝑥 =

𝑓 𝑥 + ℎ − 𝑓(𝑥 − ℎ)

2ℎ
+ 𝑂(ℎ2)

Symbolic methods:

For differentiation, the corresponding command is diff:

Integration of differential equations

Differential quotient approximated by finite difference, like in previous example.

Solution constructed by considering the following aspects:

• What do we want to know, what is known?

• Where do we start?  Initial value problem…

• How far do we step?  Smaller than fastest timescale implies maximum step size

Whiteboard!

𝑑𝒙

𝑑𝑡
= 𝒇 𝒙, 𝑡 𝒙 𝑡0 = 𝒙0 𝒙 𝑡 + ∆𝑡 = 𝒙 𝑡 + ∆𝑡 𝒇 𝒙 𝑡 , 𝑡 + 𝑂(∆𝑡2)

Warning:

• differentiation/integration of functions can be performed in parallel,

• differential equations require an iterative solution which can not be parallelized!

with  Euler:

What about systems of differential equations?

…just solve them in parallel (see previous slide) Whiteboard!

Higher-order methods

Idea: approximate differential quotient more precisely…

Solution (Runge-Kutta 2nd order):

• Go ahead with Euler by half of the stepsize…

• …use slope at that position for an Euler with the full stepsize.

This idea can be extended, for example to obtain the Runge-Kutta scheme of order 4…

In addition, the stepsize ∆𝒕 can be adapted by comparing errors made by a scheme of

order N and scheme of order N+1 (e.g. „Runge-Kutta 45“)

𝒙𝑚𝑖𝑑 𝑡 + ∆𝑡/2 = 𝒙 𝑡 + ∆𝑡/2 𝒇 𝒙 𝑡 , 𝑡

𝒙 𝑡 + ∆𝑡 = 𝒙 𝑡 + ∆𝑡 𝒇 𝒙𝑚𝑖𝑑 𝑡 + ∆𝑡/2 , 𝑡 + ∆𝑡/2 + 𝑂(∆𝑡
3)

Whiteboard

Python Tools

Numerical methods:

 Live coding

Solvers:

Symbolic methods: In addition to declaring variables, you need…

…to declare functions (for the solution we are looking for)

…to define the (differential) equation

…and the command dsolve for (trying to) solve the DEQ:

Symbolic methods, cont‘d…

• For including initial conditions,

dsolve has the optional

argument ics.

• With lambdify, You can convert

the RHS of the solution to a

normal numpy function:

• Query the new function as to

which arguments it takes, and in

which order (import inspect for

that purpose)

 Live coding

What about partial differential equations?

𝜕𝑥2

For example, the cable equation: Whiteboard

More information:

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

https://davrot.github.io/pytutorial/sympy/intro/
https://davrot.github.io/pytutorial/numpy/7/
https://davrot.github.io/pytutorial/numpy/8/

