
Topic #3
Data analysis

Fiddling with signals and frequencies

sampling, frequency space representations, filters and filter properties,

convolution theorem

Spectral analysis

(windowed) Fourier, Hilbert, wavelets, coherence measures

Multidimensional representations

PCA, ICA, SVD, k-means

Classification

ROC, k-NN, SVM

Overview

Sampling

Sampled signals have a

limited time resolution

and a limited range and

precision

Fiddling with signals and frequencies

t

s(t)

range error

frequency
above
Nyquist

2
 b

it
s

ra
n

ge
=

4
 s

ta
te

s

∆t

time
resolution

∆sprecision

Reminder: the Fourier transform

Signals s(t) can also be represented in Fourier space as complex coefficients S(f).

Transform forth and back by (inverse) Fourier transform. Visualize a Fourier-transformed

signal as power spectral density (remember lecture/exercise in Theo. Neurosciences):

some interesting signal
feature at f=10 Hz

source:
neuroimage.usc.edu

…there‘s a hole in
the bucket, dear
Liza, dear Liza!

https://en.wikipedia.org
/wiki/There%27s_a_Hol
e_in_My_Bucket

How can we extract signals at frequency ranges of interest, or put holes in

the spectrum of the data?

 Filters!

Visualizing in

frequency space

what a filter

does…

notch filter

bandpass filter

lowpass-filter

highpass-
filter

all=1

none=0

Names and props

dB = decibel: defined as 10 log(P2/P1) dB for power ratio P2 vs. P1

…therefore, 20 log(A2/A1) dB for amplitude ratios!

(note that mathematical „log“ is numpyically „log10“!)

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/

amplitude drops to ~70%

Quality factor:

Q=f0/(f2-f1)

Filter order:

~ slope of decay

Filtering with Python

We like the butterworth filter provided by the

scipy.signal module. One uses butter to construct the

filter, and filtfilt to apply the constructed filter to a

time series:

Sample signals used in
the following slides:

Low-pass filter

High-pass and bandpass

beware!
transients!

Filter caveats!

• Filters imply phase shifts. To

compensate, combine for- and

backward filtering.

• Filter first before downsampling

(see example).

• To inspect a filter, filter a white

noise signal and plot PSD.

• Take care, transients at start and

end of signal

• The more parameter you

specify, the more difficult is it to

design a filter

blue: original signal, sampled at 2500 Hz
red: downsampled to 25 Hz
black: first filtered, then downsampled to 25 Hz

𝑎 𝑡 = sin 2 ∗ 2𝜋𝑡 − 0.3 sin 23 ∗ 2𝜋𝑡

 Live coding

Kernels as filters

Convolutions can act as filters on time series. The

kernel 𝑘 𝜏 determines filter properties.
𝑠𝑓 𝑡 = 𝑘 𝜏 𝑠 𝑡 − 𝜏 𝑑𝜏

You can use the convolution theorem to

perform convolutions efficiently, using FFT.

Example: low-pass filter

The convolution theorem states that in Fourier

space, convolutions are expressed by multiplication

of the transformed signal and filter.

If you transform a filter into Fourier space, you can

investigate its properties by considering it a ‚mask‘

for your time series representation.

 𝑠𝑓 𝜔 = 𝑘 𝜔 𝑠 𝜔

𝑠𝑓 𝑡 =
 𝑘 𝜔 𝑠 𝜔

More information:

https://davrot.github.io/pytutorial/scipy/scipy.signal_butterworth/

https://davrot.github.io/pytutorial/scipy/scipy.signal_butterworth/

 ANDA tutorial…

Spectral analysis

Switch
presentations

Wavelet Transform in Python

The wavelet we want to use...
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
...applied with the parameters we want:
complex_spectrum, frequency_axis = pywt.cwt(

data=test_data, scales=wave_scales, wavelet=mother, sampling_period=dt
)

One can use the pywt module, and requires essentially only two commands for

creating a ‚mother wavelet‘ and applying it to the time series of interest:

However, working with the wavelet transform requires to think about the scales or

frequency bands, their spacing, proper definition of time/frequency resolution,

taking care of the cone-of-interest etc…

Full code at: https://davrot.github.io/pytutorial/pywavelet/

https://davrot.github.io/pytutorial/pywavelet/

More information:

https://davrot.github.io/pytutorial/pywavelet/

https://davrot.github.io/pytutorial/pywavelet/

Introduction

Neural recordings often yield a large number of signals xi(t).

Typically, these signals contain a mixture of (internal and external) sources sj(t).

Example: One EEG signal contains the activity of millions of neurons.

Goal: find the neural sources s(t) contained in the signals x(t)

Also:

- Assessment of dimensionality of a representation

- Dimensionality reduction. Get the principal components.

- Remove common sources (common reference, line noise, heartbeat artifacts, etc.)

- …

Multidimensional representations

PCA – principal component analysis

Find sources which are uncorrelated

with each other. Uncorrelated means

that the source vectors S will be

orthogonal to each other.

PCA finds matrix WPCA such that X is

explained by X = S WPCA.

Example: n signals of duration t:

S: (t x n) – n source vectors

WPCA: (n x n) – mixture matrix

X: (t x n) – n observation vectors

Visualization:

WPCA[k, :] shows how

the k-th component

contributes to the n

observations:

WPCA
-1 = WPCA

T, so S = X WPCA
T

X[:, 0]

X
[:

, 1
]

S[:, 0]

S[:, 1]

PCA – principal component analysis: Python

Use class PCA from sklearn.decomposition module:

• After defining an instance, you can use fit for fitting

a transform, and transform for transforming X to S.

• fit_transform combines these steps, and

inverse_transform does the transfrom from S to X.

• The attribute components_ will contain the PCA

transformation components

• Components will be sorted with descending

(explained) variance.
Take care! Instead of X = S WPCA, the transform is also
often defined as X‘ = WPCA S‘. This makes X‘, S‘ (n x t)
instead of (t x n) matrices!

from sklearn.decomposition import PCA

transform x to s
pca = PCA()
s = pca.fit_transform(x)
w_pca = pca.components_

transform s to x
x_recover = pca.inverse_transform(s)
also_x_recover = s@w_pca

SVD – Singular Value Decomposition

The singular value decomposition decmposes a matrix

M into two unitary matrices U and V, and a diagonal

matrix ∑: M = U ∑ V*

Assumptions are UTU = UUT = I, and VTV = VVT = I with I

being the unit matrix.

Relation to PCA: Consider m denotes ‚time‘ t,

and n <=t. Then M are the observations X, V* will be

WPCA, and S = U ∑ the uncorrelated principal

components, related via: X = S WPCA.

ICA – independent component analysis

ICA assumes also a linear mixture of ‚sources‘ via X = S WICA . However, here the

goal is to find sources which are statistically independent to each other.

The ICA transform is not unique and depends on the independence criterion!

When might ICA be more
appropriate than PCA?
 Example:

Independence criteria:
• minimization of

mutual information
• maximization of

non-Gaussianity

ICA – independent component analysis: Python

from sklearn.decomposition import FastICA

transform x to s
ica = FastICA()
s = ica.fit_transform(x)
w_ica = ica.components_

transform s to x
x_recover = ica.inverse_transform(s)

Use class FastICA from sklearn.decomposition module. The
usage is very similar to PCA.

Motivation

We have multidimensional samples X and

expect that they stem from different

‚classes‘, e.g. spike waveforms where spikes

from one particular cell constitute one class.

Samples from a particular class should have

smaller distance than samples stemming

from different classes:

Clustering

X[:, 0]

X
[:

, 1
]

class #1

class #2

The k-means Clustering Algorithm

description and
animation from
Wikipedia

The k-means Clustering Algorithm: Python

cluster_centers_

labels_

More information:

https://davrot.github.io/pytutorial/scikit-learn/overview/
https://davrot.github.io/pytutorial/scikit-learn/pca/
https://davrot.github.io/pytutorial/scikit-learn/fast_ica/
https://davrot.github.io/pytutorial/scikit-learn/kmeans/

https://davrot.github.io/pytutorial/scikit-learn/overview/
https://davrot.github.io/pytutorial/scikit-learn/pca/
https://davrot.github.io/pytutorial/scikit-learn/fast_ica/
https://davrot.github.io/pytutorial/scikit-learn/kmeans/

Classification yields information about information in data…

• Receiver-operator-characteristics (ROC): a simple tool for quick inspection for

both simple and complex data sets

• K-nearest-neighbor classifier (kNN): easy to implement, suited for a quick

inspection

• Support vector machine (SVM): an almost state-of-the-art tool for (non-)linear

classification of large data sets. Very useful if you don‘t want to fire up your deep

network and NVidia GPU for every almost trivial problem…

Classification

Important: For classification, you need a training data set, and a test data set. Each

data set contains (a large number of) samples together with their labels. You are not

allowed to use the test set for training.

Receiver-Operator Characteristics

The situation: one recorded signal r, two

potential causes „+“ or „-“: radio signal r=enemy plane (-)
or swarm of birds (+)?

p(r | +)p(r | -)

r

How can we distinguish between

„+“ and „-“?

Simplest estimator: use threshold

z, if sample r0 is smaller than z,

attribute to „-“, otherwise to „+“

Can we find an optimal z? Yes, the idea is to plot

the true positives (β) against the false positives

(α) while changing z (ROC curve). Classification

accuracy has a maximum/minimum when the

rates of change are equal (slope=1).

p(r | +)p(r | -)

r

𝛽
𝑧
=
 𝑧

∞

𝑝
𝑟|
+
𝑑
𝑟

𝛼 𝑧 =
𝑧

∞

𝑝 𝑟| − 𝑑𝑟
zopt

zopt

Whiteboard!

Summary: ROC'n'Roll

𝒅𝜷

𝒅𝜶
= 𝟏,

C1=max!

𝒅𝜷

𝒅𝜶
= 𝟏,

C1=max!

𝒅𝜷

𝒅𝜶
= 𝟏,

C1=min!

𝐶2 =
0

1

𝛽 𝛼 𝑑𝛼
𝑪𝟏
𝒎𝒂𝒙 =

𝟏

𝟐
𝒆𝒓𝒇𝒄 −

𝒅´

𝟐 𝟐

for (GAUSSIANS!)

𝑪𝟐 =
𝟏

𝟐
𝒆𝒓𝒇𝒄 −

𝒅´

𝟐

for GAUSSIANS!

0 1
0

1

slope:
𝒅𝜷

𝒅𝜶
= 𝒍 𝒛

Loss Function!

𝛽
𝑧
=
 𝑧

∞

𝑝
𝑟|
+
𝑑
𝑟

𝛼 𝑧 =
𝑧

∞

𝑝 𝑟| − 𝑑𝑟

Discriminability:

difference of means

relative to std:

d‘ := (r+-r-)/ σ

…it‘s a nice tool for quick inspection

how well a scalar variable allows to

discriminate between two situations!

k-Nearest-Neighbour Classifier:

Super-easy to explain,

super-easy to implement,

super memory consuming!

x42

x4

x17

The xi are samples of the

training data set with labels yi.

Every sample from the test data set

inside the neighborhood of x42 (Voronoi

cell) gets assigned the label y42 (k=1)…

…or the majority vote/mixture of the labels
of the k nearest neighbors.

The support vector machine (SVM)

You know how a simple perceptron works (lecture Theoretical Neurosciences)?

The SVM is doing the same thing, but transforms the data into a higher-

dimensional space before it performs a linear classification by using an

appropriately placed separating hyperplane:

transform

separating
hyperplane

Python tools for elementary classification tasks:

ROC and kNN – easy to code on your own (and a good training for you!)…

Learning an SVM is

more tricky.

scikit-learn provides

you with a good tool:

More information:

https://davrot.github.io/pytutorial/numpy/roc/
https://davrot.github.io/pytutorial/numpy/knn/
https://davrot.github.io/pytutorial/scikit-learn/svm/

https://davrot.github.io/pytutorial/numpy/roc/
https://davrot.github.io/pytutorial/numpy/knn/
https://davrot.github.io/pytutorial/scikit-learn/svm/

