
Spectral analysis...

...Why?
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given by U.E. in 2021
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Neural signals contain oscillatory activity

Oscillations emerge in all kinds of

neural signals:

EEG, MEG, LFPs, ESA, population rates, 

VSD, ...

Emergence and decay of

oscillatory/rhythmic activity have been

linked to, e.g., stimulus configuration[1], 

cognitive state[2], and behaviour[3].

[1] Gray, C., König, P., Engel, A. et al. Nature 338, 
334–337 (1989).
[2] Bosman CA, Schoffelen JM, Brunet N, et al. 
(2012);75(5):875-888.
[3] Lewandowski & Schmidt (2011), J. Neurosci. 
31 (39) 13936-13948.



Oscillations and synchrony can play an 

important functional roles in information

processing:

• stronger or more reliable activation of

postsynaptic targets

• information integration in time domain, 

phase coding

• coordination of processing among different 

neural populations or brain areas

• multiplexing and time-sharing between

different functional processes

Oscillations can play important functional roles

Dragoi G. (2013), Internal operations in the hippocampus: 
single cell and ensemble temporal coding, Frontiers in 
Systems Neuroscience 7, 46ff.

Phase precession in the Hippocampus



Oscillations are one particular example for a

more general phenomenon: neural synchronization:

- regular sync. (oscillations  focus of this Lecture!)

- irregular synchronization (spike avalanches, criticality)

- detailed spike patterns ( Sonja!)

Oscillations are a collective phenomenon

Oscillations are a signature of collective dynamics; it is

hard to build a recurrent neural network which does not 

exhibit synchronization and oscillations.

Investigating spectral content in signals provides

information about interactions, the nature of collective

dynamics in a neural system, and yields clues about

network mechanisms.
Eurich, Herrmann, Ernst (2002), Phys. Rev. E.

Criticality and Oscillations



...a quick reminder:

Fourier Facts



Signal s(t) can be described by a superposition of periodic functions with different frequencies

ω=2πf and amplitudes |S(ω)|. Transform is invertible:

Fourier facts: Definition

Euler's identity, relation to

Fourier sin/cos transform:

Python tools: FFT, IFFT (numpy, scipy)



Fourier facts: Sampling

In practice, we have to deal with

discrete signals st :
N=5 bins

recording interval T

t' [ms]

t=1 t=2

st

si
gn

al
s(

t)

Convention: 'time' t is an index, thus time resolution Dt=1, and 'frequency' f expressed in 

cycles/(unit time interval). 

Relation to real time t' via t'=t (T/N), where T is 'recording time', and to real frequency via f'=f 

(N/T). The factor fs=(N/T) is the sampling frequency.



For each frequency: One amplitude and phase as the absolute value
|S| and argument arg(S) of the complex-valued result S. 

The amplitude spectrum shows how strongly each frequency is
expressed in the signal.

Power spectrum for f>0: X(f) = 2|S(f)|2 , and X(0)=|S(0)|2. Total power 
without X(0) equivalent to variance of st (Parseval's theorem).

Fourier facts: an example...
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Sampling induces finite frequency resolution:

the Nyquist frequency

Fourier facts: an example...

Aliasing: Higher frequencies are mapped to lower

frequencies

Take care! First filter, then downsample, but never

downsample, then filter (high frequency traces will 

still be inside!)



Convolution Theorem: Convolution in time-domain is

equivalent to (element-wise) multiplication of

transformed signal with transformed kernel B in 

frequency domain:

• simple filters can be constructed by attenuating

coefficients of 'undesired frequencies' 

• convolutions can be interpreted by 'looking' at them

in frequency space

Fourier facts: convolutions in frequency space

Take care! Convolution theorem assumes periodic boundary conditions - for

neural signals, don't trust your signal 'edges'.

*

frequency f

transform of s

transform of bsignal s



...obtaining the "good vibrations"

Multitapering



Which problems do we have in estimating spectra?

Vanilla Fourier is only ideal for noiseless infinite signals, but...

• ...physiological data is subject to noise

• ...physiological data is finite

a) So, we have an unknown spectrum S(f) 
which is related to samples st via:

b) Estimate computed via DTFT:

c) These equations relate the estimate to the real spectrum by means of a kernel K.
The spectral estimate turns out to be a mixture of components from 'correct' spectrum:



The solution: Multitapering - the method

Multitapering: Average spectral estimates from

different "regions" of a time series (regions = 

tapers)

• Idea: Use taper functions/envelopes w(l) implying

kernels K(l) which are more localized in frequency

space...

• Problem: ...now only part of data in time period

T will be used

• Solution: ...use multiple, orthogonal kernels and

average.

Uses all data, reduces frequency crosstalk and

reduces noise through averaging!

P.P. Mitra, B. Pesaran, Analysis of Dynamic Brain Imaging Data, 
Biophysical Journal, 76(2), 1999, 691-708, 
https://doi.org/10.1016/S0006-3495(99)77236-X.



Multitapering: Examples

signal st
l=1

l=2

l=3

l=4

Python tools: scipy.signal.windows.dpss

Which tapers to use? For example:
DPSS: discrete prolate spheroidal functions
(constitutes local eigenbasis in frequency
space)



Spectral estimates are improved

Spectrum estimated from one taper Spectrum estimated from multiple tapers



...a dynamic brain requires
dynamic methods

Time-resolved
spectral analysis



Extend Fourier to windowed Fourier...

Split time series into chunks, size of taper

determines temporal resolution...

...or move analysis window over time series: can

be written as a convolution (marked as *)
(but does NOT increase temporal resolution, just gives

smoother curves)

taper

Bruns A. (2004), J Neurosci Methods 30;137(2):321-32.



A similar idea: the continuous Wavelet transform

...windowed Fourier

...Wavelet transform
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Wavelet 
transform:

Windowed
Fourier:

low f

high f

time t time t

low f

high f



Example: Morlet-(mother)-Wavelet

Morlet-Wavelet has a parameter s which

controls how many periods are squeezed

into the envelope.

To obtain wavelets for analyzing different frequencies, 

the mother wavelet is scaled accordingly:

Envelope Periodic fct. Morlet wavelet (real part)

s = 6 (periods/wavelet)



Example: Wavelet amplitude spectrum

Take care! Wavelets have a finite width, 
so cut the edges (cone-of-influence, COI)

for Morlet: (power has to decay to 1/exp(2), it's a bit too permissive for my taste...)

Torrence, C. and Compo, G.P. (1998) A practical guide to wavelet 
analysis. Bulletin of the American Meteorological Society, 79: 61--78.

test signal Wavelet 
transform
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Frequency and time (of change) can not 
be assessed independently with
arbitrary precision!

Tradeoff between temporal and spectral resolution
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Matlab: WAVELET_UncertaintyRelation



sampling rate (Nyquist)+ preprocessing filter

properties (i.e. lowpass) imply an appropriate

upper threshold

Time-resolved analysis: Limits on temporal/spectral resolution

time
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cy

window size/

envelope provide

left/right cutoff

recording time/size of

trial implies lower

threshold

"reliable" data...



...going beyond power

Extracting the phase



How do we obtain the phase?

The phase is fragile: filtering before spectral analysis should use phase-preserving

filters (e.g. forward/backward filtering, Python: filtfilt) 

Remember:

Windowed Fourier:

Wavelet:

...and there's yet another transform: the Hilbert transform!

From a time-varying spectral estimate S(f, t), the current phase of the signal can

simply be obtained as its argument (Python: 'angle' function)

Filter Demo Matlab



The Hilbert transform

Phase shift of π/2 is multiplication with i in frequency space:

The idea: from real-valued signal s(t), construct a complex

analytic signal by adding a complex-valued function h(t):

(...for example, cos(wt) gives sin(wt), thus arg[ h(t) ]=wt gives the time-varying phase)

The Hilbert transform h(t) is obtained by applying a phase

shift of -π/2 to all spectral components, via multiplication

with exp(i Dφ):

Using the Heaviside-Function θ, the analytic signal in frequency space becomes:



Interpreting the Hilbert transform I

Neurophysiological (and other) signals typically have a broad

spectrum. Before applying the Hilbert transform, it makes

sense to bandpass-filter the signal around frequency of

interest f0 , via bandpass bf0
(t):

(Convolution:                                                                    )

Filtering and Hilbert transform can both be performed by

multiplication in frequency space:

Interestingly, this operation can be described by

convolution of the signal with an equivalent lowpass

filter, multiplied by a periodic function!

|SH(t)| |SH(f0, t)|



a) Bandpass filter in frequency space: 

|S(f)| 

f 
+f0-f0

b) Equivalent lowpass:

f 

|S(f)| 

+f0-f0

|S(f)| 

f 
+f0-f0

shift

cut

Interpreting the Hilbert transform II

c) Turn it around...:



Which one is the best? Fourier, Wavelet or Hilbert?

They are all equivalent! Can be written as convolution of the signal with a 

temporal kernel multiplied by a complex periodic function:

Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis: 
are they really different approaches? J Neurosci Methods. 2004 
Aug 30;137(2):321-32. doi: 10.1016/j.jneumeth.2004.03.002. 
PMID: 15262077.



...relating signals across sites and
frequency bands

Spectral coherence and
cross-frequency coupling



Relating spectral content across sites

Spectral coherence is defined similar to a 'normal' correlation function, but operates on the

complex-valued spectral coefficients of two (Wavelet/Hilbert/Fourier)-transformed time series

from two (recording) sites A and B:

Summation: e.g. over trial

repetitions r. In addition, one

can collapse e.g. over time: 

Normalization: ensures

result is between 0 and 1.

Take care! Averaging

before or after taking

absolute value matters! 

Time delay: i.e., compensates

for synaptic transmission, 

internal dynamics



Example: Spectral coherence
Spectral coherence SCAB(f, t)Original signals

Two signals sA and sB, both broadband 1/f-noise.

Common, superimposed f0=42 Hz oscillation, delayed in signal A. 



What is computed?

Inside sum: Product of amplitudes, and difference of phases:

(Vector) Summation: Complex average of phase differences... (weighted by amplitudes)

Re

Im

1

1

Re

Im

1

1

all amplitudes 1: amplitudes different:

--> phase locking value (PLV) --> mean vector length (MVL)



The phase-locking value (PLV) or phase consistency (PCO)

Ignore the amplitudes:

Benignus VA. Estimation of the coherence spectrum and its 
confidence interval using the fast Fourier transform. IEEE Trans 
Aud Electroacoust 1969; AU-17:145–50.

Sun T, Yang ZJ (1992) How far can a random walker go? 
Phys A Stat Mech Appl 182:599–606.

PLV/PCO is one, if A and B are

coherent, and 0 if phase diffs are

uniformly distributed.

However, the measure has a bias!

Silversmith et al. (2020), J. 
Neurosci. 40(24):4673–4684

Example:



Removing the bias: pairwise phase consistency (PPC)

Vinck, van Wingerden, Womelsdorf, Fries, Pennartz, The pairwise phase consistency: A bias-free measure of rhythmic 
neuronal synchronization, NeuroImage, 51 (1), 2010, 112-122, https://doi.org/10.1016/j.neuroimage.2010.01.073.

The idea: Consider differences of phase differences!

Bias for the two
measures:



Relating spectral content across frequencies (and sites...)

Phase-amplitude coupling (PAC): 
Several measures, for example cross-
frequency coherence (CFC), envelope-
to-signal correlation (ESC) or
modulation index (MI). 

Angela C.E. Onslow, Rafal Bogacz, Matthew W. Jones,
Prog. Biophys. and Molec. Biol., 105 (1–2), 2011, 49-57,  
https://doi.org/10.1016/j.pbiomolbio.2010.09.007.

MI: computation similar to MLV; use
equation for SC, replace:



Various other aspects...

a) More complex forms of phase-amplitude coupling

(bi-modality, cross-frequency coupling):
 use Kullback-Leibler distance

(measures devations from equidistribution) π 2π0 φ
modified from:
Tort et al., J. Neurophys. 2010 

b) Closed-loop scenarios:
 use autoregressive methods to predict phase advance 
into the future

Lisitsyn & Ernst, Frontiers Comp. Neurosci. 2019

c) Linking/correlating continuous signals to spikes
 spike-triggered averaging, e.g. spike-field coherence



...the End:

Guess - what's this?

(of course, a superposition of two extremely strong gamma
oscillations in perfect antiphase)









Spectral analysis of neural signals:
Opportunities and pitfalls in characterizing oscillations and 
synchrony in brain activity

Udo Ernst

Computational Neurophysics Lab,
Institute for Theoretical Physics

University of Bremen

Zentrum für
Kognitionswissenschaften



...an example:

Selective processing
in the visual system
(aka: the "Sushi challenge")



The visual system has to integrate distributed information

V1
V4

TEO

IT

[modified from A. Kreiter]



Signal integration creates a 
challenge for selective processing

receptive field,
e.g. neuron in 
area V4

behaviorally
relevant, 
attend!

irrelevant, ignore
(...maybe becomes
important later!)

In such a situation, neurons in area

V4 seem to respond as if only the

attended stimulus would be

present...

Moran J and Desimone R (1985). Selective attention 
gates visual processing in extrastriate cortex. Science, 
229, 782–784.
Reynolds JH, Chelazzi L and Desimone R (1999). 
Competitive mechanisms subserve attention in 
macaque areas V2 and V4. J.Neurosci., 19(5), 1736–
1753. 

V1
RFs

With increasing RF size, selection becomes necessary



How could selective processing work?

attended
stimulus

non-attended
stimulus

V1 population(s) V4 population
1. Enhancement of output of V1 
population representing attended
stimulus?

No, not observed, both V1 populations
carry about the same stimulus
information!

2. Enhancement of output of V4 ?

Not a good idea, this would enhance the
signal representation of both stimuli



How could selective processing work?

attended
stimulus

non-attended
stimulus

V1 population(s) V4 population
in-phase g-sync.!

Fries P (2005) A mechanism for cog-
nitive dynamics: neuronal communi-
cation through neuronal coherence.
Trends Cogn Sci. 9(10):474-80.

Communication-
through-coherence
(CTC)

Routing-by-synchrony
(RBS)
Kreiter AK (2006) How do we model 
attention-dependent signal routing? 
Neural Networks 19: 1443-1444
Kreiter AK (2020) Synchrony, flexible 
network configuration, and linking 
neuralevents to behavior. Cur. Op. 
Physiol. 16: 98–108

excitability peaks
of local activity

3. Enhance effective
interactions! But how?



memorize
sample

recognize
match

0     650           1950            3350           4750            6150           7550  [ms]

1°

An experimental paradigm for investigating selective processing

Taylor K, Mandon S, Freiwald WA and Kreiter AK (2005). Coherent oscillatory activity in 
monkey area v4 predicts successful allocation of attention. Cereb. Cortex 15(9), 1424-37.

V4

V1 RF (att.)

V1 RF (not att.)

[modified from A. Kreiter]



a) Is selective attention
accompanied by selective
(phase) synchronization?



Is selective attention accompanied by selective synchronization?

Hypothesis: V1 attended synchronizes with V4. How do we investigate?

- stimulus is dynamic over time, neural signals are subject to considerable noise, 

thus oscillatory dynamics (if present) is not "stationary":

use Wavelet transform

- identify frequency band of interest

- amplitude of wavelet transforms is not very important:

compute phase coherence (PC, PLV!)



Phase coherence (PC) between V1 and V4 supports RBS

V4 
RF

V1 RF
(att.)

V4 
RF

V1 RF
(not att.)

PC(V4, V1 att.) PC(V4, V1 not att.)



b) Does selective
attention/synchronization modulate

effective interactions?



Is selective processing accompanied by enhanced signal transfer?

Hypothesis: We know V1 attended synchronizes with V4.

Does it open a 'gate' for visual information?

- Detecting correlations between V1 and V4 does not give us the answer. We do 

not know their contribution to signal processing or signal transfer...

- We need a causal method: here we have to specify the signals the visual system

has to select by constructing the visual stimuli appropriately!

(...alternatively: by activating the 'sending' populations, e.g. by

electric/optogenetic stimulation



Tracking visual information with flickering stimuli

Tag visual stimuli with independent, 
random luminance fluctuations :

luminance variation, 
attended stimulus

luminance variation, 
non-attended stimulus

contribution of
attended signal
to V4 LFP?

contribution of
non-attended
signal to V4 LFP?

...compute frequency-resolved correlation between
visual signal and LFP (spectral coherence)

Modified from Grothe, Rotermund, Neitzel, Mandon, Ernst, 
Kreiter and Pawelzik K (2018)., J. Neurosci.,38:3441-3452.



-200 0 200 -200 0 200

Time delay (ms) Time delay (ms)

0.02

0.06

0.1

0.18

0.14

S
C

4.8
7.2
11
16
24
36
53
79

V4 LFP - att signal V4 LFP - non att signal

Attended signal is enhanced relative to non-attended signal

Computing a delayed correlation is important:

e.g. transmission delays, finite response times of neural system

Good to have f-dependence. Obtain a transmission characteristics instead of a single value...

Grothe I, Rotermund D, Neitzel SD, Mandon S, Ernst 
UA, Kreiter AK and Pawelzik K (2018). Attention 

Selectively Gates Afferent Signal Transmission to Area 
V4, J. Neurosci., 38 (14):3441-3452.
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c) Do effective interactions rely
on a pulsed-package

transmission scheme?



Routing-by-synchrony makes a specific prediction...

excit.
peaks

excit. 
troughs

• Transfer of attended signal is Gamma-
phase-specific:
high near peaks, low near troughs

• Routing occurs through
pulsed information packages

• The higher the LFP amplitude of the
receiving population in V4, the larger 
is signal content.

V4 activation 
and spiking 
activity

attended signal



Quantify visual signal content at specific g-phases and amplitudes

1. Extract g-activity from LFP 
(by bandpass filter)

2. Determine g-phase and g-
amplitude
(by Hilbert transform)

3. Mark g-phases
corresponding to
excitability peaks and
excitability troughs

4. Tag intervals with high and
low g-amplitudes



Extracting phase- and amplitude-specific neural signals

Phase-specific analysis:

Resample LFPs or multi-unit 
activity (MUA) at excitability
peaks (red dots) or troughs
(blue dots) or ANY other phase
of interest...

Amplitude-specific analysis:

Extract periods of high g-
activity (red regions) or
low g-activity (blue regions)

We use the marked phases and tagged intervals as selectors to pick the corresponding signal
content from the recorded data:



Collapsing the spectra to single numbers

e.g., for excitability peaks...

e.g., for excitability troughs

Average spectral coherence over region-of-
interest (ROI) in time and frequency to obtain
just one number SC...

ROI
SC(t, f)



Signal content is higher at excitability peaks

Quantify attended/non-attended stimulus signal content in
phase-specific signals extracted from LFPs:

peak trough
D. Lisitsyn, I. Grothe, A.K. Kreiter, U.A. Ernst (2020). Visual Stimulus 
Content in V4 Is Conveyed by Gamma-Rhythmic Information Packages
J. Neurosci., 40 (50) 9650-9662.



Signal content is higher during high-g-amplitude periods 
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Split analysis into low/high gamma amplitude intervals, and analyze separately

red curve: high-amplitude gamma activity
blue curve: low-amplitude gamma activity



Thanks to YOU and to...:

David Rotermund

Maik Schünemann

Daniel Harnack

Dmitriy Lisitsyn

Klaus Pawelzik

Simon Neitzel

Katja Taylor

Iris Grothe

Sunita Mandon

Andreas Kreiter

Your tutor for
today and
tomorrow!



Exercises for this Lecture

Your gamma-challenge



single
electrode, V4

The experiment!

Group A:

- implement spectral coherence (SC)

- compute SC between flicker signals A, B and V4 local

field potential (LFP)

- find out which stimulus was attended (i.e. is 'routed')!

a North 
German 

spider
monkey

Group B:

- implement computing the phase-locking-value (PLC)

- compute PLVs between V4 LFP and all V1 sites

- find out which V1 site is maximally synchronized with V4!

All groups:

- implement (i.e., find out how to use) Wavelet transform
10 x 10 
"Nevada" 
Array, V1


