Spectral analysis...

... Why?

originally from ANDAZOZI

-#G-Node Advanced Neural Data Analysis Course given by U.E. in 2021




Neural signals contain oscillatory activity

Oscillations emerge in all kinds of
neural signals:

EEG, MEG, LFPs, ESA, population rates,
VSD, ...

Emergence and decay of
oscillatory/rhythmic activity have been
linked to, e.g., stimulus configuration!t],
cognitive statel?], and behaviourl3l.

[1] Gray, C., Kbnig, P., Engel, A. et al. Nature 338,
334-337 (1989).

[2] Bosman CA, Schoffelen JM, Brunet N, et al.
(2012);75(5):875-888.

[3] Lewandowski & Schmidt (2011), J. Neurosci.
31 (39) 13936-13948.
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EEG example, looted from Wikipedia



Oscillations can play important functional roles

Oscillations and synchrony can play an Phase precession in the Hippocampus
important functional roles in information Facocells s Eis N3 b
processing:

e stronger or more reliable activation of
postsynaptic targets
e information integration in time domain,

phase coding | | W | |
e coordination of processing among different || || \ IIII | || |I l
neural populations or brain areas J W Il y \V _
* multiplexing and time-sharing between - 125 ms
different functional processes Phase precession v
| | I O | | |
7 X a e ) ¢
Dragoi G. (2013), Internal operations in the hippocampus: K

single cell and ensemble temporal coding, Frontiers in Time
Systems Neuroscience 7, 46ff. >




Oscillations are a collective phenomenon

Criticality and Oscillations

0=0.92, At=20/N ms

Oscillations are one particular example for a

A 0=0.6, At=20/N ms

more general phenomenon: neural synchronization: sl T T g,

- regular sync. (oscillations — focus of this Lecture!) N V 8° v

- irregular synchronization (spike avalanches, criticality) :jz 28

- detailed spike patterns (— Sonja!) b {9 At

bl e s Wik ALl

Oscillations are a signature of collective dynamics; it is L oL N ‘ e
hard to build a recurrent neural network which does not aof} 1 _—

exhibit synchronization and oscillations. s 60}5 DAL | ool e |
Investigati nsi - i R R R R
nvestigating spectral content in signals provides || ] | [ | ’, 11
information about interactions, the nature of collective L 1g?[m“i;]5(j L] 1\2'3- o LI
dynamics in a neural system, and yields clues about : g
network mechanisms. o *

Eurich, Herrmann, Ernst (2002), Phys. Rev. E.



...a quick reminder:
Fourier Facts



Fourier facts: Definition

Signal s(t) can be described by a superposition of periodic functions with different frequencies
w=2nf and amplitudes |S(w)|. Transform is invertible:

+00
S(w) = Fls] o / §(1) exp(—iwt)dt

__|C_>Ooo
s(t) = F7HS] « / S(w) exp(iwt)dw

— O
Euler's identity, relation to

Fourier sin/cos transform:

exp(i¢) = cos(¢) + i sin(¢)

Python tools: FFT, IFFT (numpy, scipy)



Fourier facts: Sampling

In practice, we have to deal with

discrete signals s, :
N N=5 bins

S(f) = > siexp(—2mift)

t

recording interval T

signal s(t)

0 210 4JO 6|0 8‘0 100

t' [ms]
Convention: 'time' t is an index, thus time resolution At=1, and 'frequency' f expressed in
cycles/(unit time interval).

Relation to real time t' via t'=t (T/N), where T is 'recording time', and to real frequency via f'=f
(N/T). The factor f.=(N/T) is the sampling frequency.



Fourier facts: an example...

S(f) = S™(-f)
c 03 real part |
w 5 o2 Imag part |
T F[...] %
‘b:D % 0.1 L L |
2 — C 333 . f Boggs
B | | | | u§- -0.2‘ | | | T
0 20 40 60 80 100 -0.1 -0.05 0 0.05 0.1
time index t frequency f
For each frequency: One amplitude and phase as the absolute value & °°
|S| and argument arg(S) of the complex-valued result S. E 051 ¢
o 04
The amplitude spectrum shows how strongly each frequency is S .
expressed in the signal. 7y ol
C o
Power spectrum for f>0: X(f) = 2| S(f)|2, and X(0)=|S(0) | 2. Total power 2 o1 ‘ I |
without X(0) equivalent to variance of s, (Parseval's theorem). ~

o

0.05 0.1
frequency f



Sampling induces finite frequency resolution:
the Nyquist frequency
/
fNy — f8/2
i.e., fNy —

= 1/2

Aliasing: Higher frequencies are mapped to lower
frequencies

f4> mod (f:fNy)

Take care! First filter, then downsample, but never

downsample, then filter (high frequency traces will
still be inside!)

s(t)
3

Fourier facts: an example...

Original signal (f=22/25)
' T

“ |

10 15

20
t
1 o Samp[ed signal (f;-3125) »
9 4
4
\ 1 |
0.5 @
E
Oq \
4
\

15

25

25



Fourier facts: convolutions in frequency space

Convolution Theorem: Convolution in time-domain is
equivalent to (element-wise) multiplication of
transformed signal with transformed kernel B in
frequency domain:

(sxb)(t) = F[S(/)B(S)
= F I F[s()]F[b(1)]

0.2

transform of s |

0 | | 1 | | |
0 005 01 015 02 025 03 035 04 045 05

1

signal s |
* simple filters can be constructed by attenuating \
coefficients of 'undesired frequencies'

* convolutions can be interpreted by 'looking' at them 0 005 01 015 02 025 03 03 04 045 05

Itraﬁsfdrm 6f b

, frequency f
in frequency space

Take care! Convolution theorem assumes periodic boundary conditions - for
neural signals, don't trust your signal 'edges’.



...obtaining the "good vibrations”

Multitapering



Which problems do we have in estimating spectra?

Vanilla Fourier is only ideal for noiseless infinite signals, but...
e ...physiological data is subject to noise
e ...physiological data is finite

1/2
a) So, we have an unknown spectrum S(f) Sy = / S(f) eXp(iQﬂ'ft)df
which is related to samples s, via: —1/2

N
b) Estimate computed via DTFT: S*(f) — Z sy exp(—i2m ft)
t

c) These equations relate the estimate to the real spectrum by means of a kernel K.
The spectral estimate turns out to be a mixture of components from 'correct’' spectrum:

sin(N7(f — f))

K(f—f',N)=-exp(—2mi(f — f) (N +1)/2) sin(w(f — f7))



The solution: Multitapering - the method

Multitapering: Average spectral estimates from
different "regions" of a time series (regions =

tapers) N
* Idea: Use taper functions/envelopes w!) implying A(D) |
kernels K which are more localized in frequency SU(S) = Z > xp(—127 f1)
¢

space...



Multitapering: Examples

signal s,

Amplitude

10[

1

!

(s

Amplitude
o

57

-1 0 i 1 1 1 1 1
0 50 100 150 200 250 300
Time

Which tapers to use? For example:
DPSS: discrete prolate spheroidal functions

(constitutes local eigenbasis in frequency
space)

Python tools: scipy.signal.windows.dpss



Spectral estimates are improved

Spectrum estimated from one taper Spectrum estimated from multiple tapers

106 i ) 10000.00¢ :
105 rl‘ 1000.00 —
104 /N M (\f 5 100,00 ‘
103_ 2 1000 ' '
10°} =
101

1091

0.00 0.10 0.20 0.30
Frequency



...a dynamic brain requires
dynamic methods

Time-resolved
spectral analysis



Extend Fourier to windowed Fourier...

n M I , m | ...or move analysis window over time series: can

WW\MV U W V u be written as a convolution (marked as *)

Amplitude

(but does NOT increase temporal resolution, just gives
smoother curves)

0 50 100 150 200 250 300 10

Time
Split time series into chunks, size of taper 511
determines temporal resolution...

0 ]

Amplitude

SOf.1) = s(t) x (w (0) explizn f(t ~ T/2)))

-1 0 i L 1 1 1
0 50 100 150 200 250 300

Time

Bruns A. (2004), J Neurosci Methods 30;137(2):321-32.



A similar idea: the continuous Wavelet transform

S (f. 1)
S’T/V (fa t)

Windowed 1

e =

[ 0
wi (t)

&

Af = const. |

05

0

-05¢

L

= s(t) (wg) (t) exp(i2m f(t — T/Q)))
= s(t) * (ww(f,t) exp(i27 ft)))

high f|
5

10 -5 0 10

-10 -5 0 5 10

...windowed Fourier

...\Wavelet transform

Wavelet 1 'high p
transform: 0.5 '
ww (fa t) ’

057
Af 1-10 5 0 5 10
7 — const.

1

0.5r

0

-0.5¢

-1

-10 -5 0 5 10

Wavelet Demo Matlab



Example: Morlet-(mother)-Wavelet

Envelope Periodic fct. Morlet wavelet (real part)

Co = \/1—|—exp “E
qu
1

k, = exp (—502)

Morlet-Wavelet has a parameter ¢ which

controls how many periods are squeezed T4 3 2 4 0 1 2
into the envelope.

To obtain wavelets for analyzing different frequencies, 27
ot andlyzing aire ; ww (f,1) == We | —f1
the mother wavelet is scaled accordingly:



signal s(t)

Example: Wavelet amplitude spectrum

test signal Wavelet
15 T | T T T T
| | transform 1018 —
1 {016 S
051 185 10.14 -i
N Q
05 5‘13'1 | 0.1 =
C =
a4l ¢ 10.7 008 YN
8‘ ‘ Q
s A N S IR R N B B B £ 88 0.06 ©
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 3
time t [s] 7.2 0.04 i
5.9 0.02 %
Take care! Wavelets have a finite width, 48
so cut the edges (cone-of-influence, COI) 0 0.5 ! 1.5

time t [s]

o V2
for Morlet: tcoor ~ 2— 7 (power has to decay to 1/exp(2), it's a bit too permissive for my taste...)
7>

Torrence, C. and Compo, G.P. (1998) A practical guide to wavelet
analysis. Bulletin of the American Meteorological Society, 79: 61--78.



Tradeoff between temporal and spectral resolution

Frequency and time (of change) can not O;\ /’\ A A & /\ ﬂ /\ _I33§CZ|'§(30)H I
be assessed independently with 0

arbitrarypreciiont WVVY \\/ vV v \/ U

-0.1

AfAL > 1

Matlab: WAVELET UncertaintyRelation

looks good!



frequency

Time-resolved analysis: Limits on temporal/spectral resolution

"reliable" data...

IAfAt > 1

window size/ time
envelope provide
left/right cutoff

sampling rate (Nyquist)+ preprocessing filter
properties (i.e. lowpass) imply an appropriate
upper threshold

recording time/size of
trial implies lower
threshold



...going beyond power

Extracting the phase



How do we obtain the phase?

Remember:  S(f,) = A(f.t) exp(id(f.1))

From a time-varying spectral estimate S(f, t), the current phase of the signal can
simply be obtained as its argument (Python: 'angle' function)

ggF(fa t) arg[‘gF(fa t)]
Wavelet: dw(f.t) = arg[Sw(f,t)

Windowed Fourier:

The phase is fragile: filtering before spectral analysis should use phase-preserving

filters (e.g. forward/backward filtering, Python: filtfilt)
Filter Demo Matlab

...and there's yet another transform: the Hilbert transform!



The Hilbert transform

The idea: from real-valued signal s(t), construct a complex
analytic signal by adding a complex-valued function h(t): c(t) = s(t) + th(t)

The Hilbert transform h(t) is obtained by applying a phase

Aexp(i¢) exp(iA
shift of -it/2 to all spectral components, via multiplication _ 4 p( Cb_) p(A ?)
with exp(i Ad): = Aexp(i(¢ + Ag))

(...for example, cos(wt) gives sin(wt), thus arg[ h(t) ]=wt gives the time-varying phase)

Phase shift of /2 is multiplication with i in frequency space: H(f) = —isgn(f)S(f)

Using the Heaviside-Function B, the analytic signal in frequency space becomes:

C(f)=58(f) +iH(f) =25(f)O(f)



Interpreting the Hilbert transform |

Neurophysiological (and other) signals typically have a broad
spectrum. Before applying the Hilbert transform, it makes
sense to bandpass-filter the signal around frequency of
interest f, , via bandpass bfo(t):

Sfo(t) = s(t) * by, (t)
Filtering and Hilbert transform can both be performed by
multiplication in frequency space:

Su(f,t) = FS()Bs ()20 —5 &+ 5 3 4 & =
Interestingly, this operation can be described by Signﬁpm] - enveﬁgzﬂ]

convolution of the signal with an equivalent lowpass
filter, multiplied by a periodic function!

St (f.t) = s(t)* (br(t) exp(i2nft))
(Convolution: a(t) x b(t) = /a(t')b(t —t"dt" )

JFIsulfo )l




Interpreting the Hilbert transform Il
| S() |

a) Bandpass filter in frequency space:

By, (f) JAWREUAN f

-f. +f.

b) Equivalent lowpass:

e shift
Br(f) = 2B, (f + fo)O(f + fo) :"1‘ /\ |S(f) |
' cut
c) Turn it around...: ! | j K f
2B,,(1O(f) = Br(f - fo) o o
= Br(f)*o(f — fo) - |S(f)]

FYBr(f) % 8(f — fo)] = br(t) exp(i2rfot) =

— Su(f.1) = s(t) * (br(t) explizn 1) 20 .




Which one is the best? Fourier, Wavelet or Hilbert?

They are all equivalent! Can be written as convolution of the signal with a
temporal kernel multiplied by a complex periodic function:

SP() = s(t)x (wl (@) expliznf(t —T/2)))

Swi(fit) = s(t)x (ww(f,t)exp(i2mft)))
Su(fit) = s(t)* (br(t) exp(i27 f1))

Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis:
are they really different approaches? J Neurosci Methods. 2004
Aug 30;137(2):321-32. doi: 10.1016/j.jneumeth.2004.03.002.
PMID: 15262077.



...relating signals across sites and
frequency bands

Spectral coherence and
cross-frequency coupling



Relating spectral content across sites

Spectral coherence is defined similar to a 'normal’ correlation function, but operates on the
complex-valued spectral coefficients of two (Wavelet/Hilbert/Fourier)-transformed time series
from two (recording) sites A and B:

Take care! Averaging

before or after taking Z Z C;| # ;: S: C, Time delay: i.e., compensates

) : for synaptic transmission
absolute value matters! t i t i _ ynap _ !
internal dynamics

Summation: e.g. over trial
repetitions r. In addition, one
can collapse e.g. over time:

At +DSE |

fi+ P SN ISE(LOF >

SC(f,t,7) — SC(f, 1) \ Normalization: ensures

result is between 0 and 1.




Example: Spectral coherence

Original signals Spectral coherence SC,g(f, 1)

3 T T

10.8

10.7

10.6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
t[s]

-4 1 1 1 1
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 02 0.1 0 0.1 0.2

t[s]
Two signals s, and s;, both broadband 1/f-noise.
Common, superimposed f,=42 Hz oscillation, delayed in signal A.

7 [s]



What is computed?

Inside sum: Product of amplitudes, and difference of phases:

SaSp = |54l|SB|exp(i(dpa — éB))

(Vector) Summation: Complex average of phase differences... (weighted by amplitudes)

all amplitudes 1: amplitudes different:
1 1
‘y _A
| > / T >
1 Re 1 Re
--> phase locking value (PLV) --> mean vector length (MVL)




The phase-locking value (PLV) or phase consistency (PCO)

Example:
Spike-Phase Distribution
/2

Ignore the amplitudes: ‘ZN exp(i(p? — ¢B)) i

P ST e P [opliB P
PLV/PCO is one, if A and B are " ' " 5

N
coherent, and O if phase diffs are S ZGXP(Z(@ — $B))
. _ N
uniformly distributed. r
PLV = PCO
37/2
Silversmith et al. (2020), J.
Neurosci. 40(24):4673-4684
However, the measure has a bias!
r 1 - PCO
POOb@as — PCOCOT’T — PCO -
4N N
Sun T, Yang ZJ (1992) How far can a random walker go? Benignus VA. Estimation of the coherence spectrum and its
Phys A Stat Mech Appl 182:599-606. confidence interval using the fast Fourier transform. IEEE Trans

Aud Electroacoust 1969; AU-17:145-50.



Removing the bias: pairwise phase consistency (PPC)

The idea: Consider differences of phase differences!

9 N-1 N
PPC = NN — 1) Z Z COS (Aqbe _ AqﬁﬁB)

r=1 r'=r+1 A B
AB . A B 0.12
Acb'r L Qb,r. _ gb'r 6.
>
S
€ 03 2
. > 3
Bias for thetwo ¢ o
o ©
measures. b 0.2 S 0.04 1
§ ‘ 3 e
o E
I e —————
0.1 - o%i;i” —— —
20 40 60 80 100 20 40 60 80 100
Number of spikes Number of spikes

Vinck, van Wingerden, Womelsdorf, Fries, Pennartz, The pairwise phase consistency: A bias-free measure of rhythmic
neuronal synchronization, Neurolmage, 51 (1), 2010, 112-122, https://doi.org/10.1016/j.neuroimage.2010.01.073.



Relating spectral content across frequencies (and sites...)

Phase-amplitude coupling (PAC):
Several measures, for example cross-
frequency coherence (CFC), envelope-
to-signal correlation (ESC) or
modulation index (Ml).

MI: computation similar to MLV, use
equation for SC, replace:

SA(f) — IS (Famp)|
SB(f) — €XD (i¢B(fpha,se))

Angela C.E. Onslow, Rafal Bogacz, Matthew W. Jones,
Prog. Biophys. and Molec. Biol., 105 (1-2), 2011, 49-57,
https://doi.org/10.1016/j.pbiomolbio.2010.09.007.

A
1000 pVI

Raw signal

5-10 Hz

60-80 Hz
(x 4)

-
L=
o

Power (dB)




a) More complex forms of phase-amplitude coupling
(bi-modality, cross-frequency coupling):
— use Kullback-Leibler distance

(measures devations from equidistribution) 0 TT

spiking
activity (Hz)
g 8

o

1
N

4

AV

post-synaptic
current (nA)
o

S

WA i

phase
(rad)
o

3

/

7,
y &/

0

20
time r

Various other aspects...

Phase-Amplitude Plot

LG Amplitude
o
o
(&)

21T

modified from: (b
Tort et al., J. Neurophys. 2010
b) Closed-loop scenarios:

— use autoregressive methods to predict phase advance
into the future

Lisitsyn & Ernst, Frontiers Comp. Neurosci. 2019

c) Linking/correlating continuous signals to spikes
— spike-triggered averaging, e.g. spike-field coherence



...the End:
Guess - what's this?

(of course, a superposition of two extremely strong gamma
oscillations in perfect antiphase)
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...an example:
Selective processing

in the visual system
(aka: the "Sushi challenge")



The visual system has to integrate distributed information

[modified from A. Kreiter]



With increasing RF size, selection becomes necessary

Signal integration creates a In such a situation, neurons in area
challenge for selective processing V4 seem to respond as if only the
} attended stimulus would be
iy ! present...
recepti& - : behaviorally
. { T releva nt, Moran J and Desimone R (1985). Selective attention
ttend! gates visual processing in extrastriate cortex. Science,
attend: 229, 782-784.

Reynolds JH, Chelazzi L and Desimone R (1999).
Competitive mechanisms subserve attention in
macaque areas V2 and V4. J.Neurosci., 19(5), 1736—
1753.

irrelevant, ignore
(...maybe becomes
important later!)




How could selective processing work?

V1 population(s) V4 population
1. Enhancement of output of V1

population representing attended
stimulus?

No, not observed, both V1 populations
carry about the same stimulus
information!

2. Enhancement of output of V4 ?

Not a good idea, this would enhance the
signal representation of both stimuli

non-attended
stimulus



How could selective processing work?

V1 population(s) V4 population . ;
in-phase y-sync.! 3 Enhar.mce elffectlve i
attended excitability peaks interactions! But how?
stimulus of local activity

¥ Communication-
@ g through-coherence
fos N (CTC)

Fries P (2005) A mechanism for cog-
N/ nitive dynamics: neuronal communi-
D, o

cation through neuronal coherence.
y Trends Cogn Sci. 9(10):474-80.

4

' Routing-by-synchrony
> ¥ e

\ J Kreiter AK (2006) How do we model
non-attended attention-dependent signal routing?

. | Neural Networks 19: 1443-1444
stimulus Kreiter AK (2020) Synchrony, flexible
network configuration, and linking
neuralevents to behavior. Cur. Op.
Physiol. 16: 98-108




An experimental paradigm for investigating selective processing

===

A
=

/

Z
Z

=

=2

memorize recognize
sample match

:’ S I R

Visual Stimulation Signal Amplification Data Acquisition
and Task Control and Filtering

or

YYYYYYY
\

il o

!
|
U

0 650 1950 3350 4750 6150 7550 [ms]

Taylor K, Mandon S, Freiwald WA and Kreiter AK (2005). Coherent oscillatory activity in

monkey area v4 predicts successful allocation of attention. Cereb. Cortex 15(9), 1424-37. . .
[modified from A. Kreiter]



a) Is selective attention
accompanied by selective
(phase) synchronization?



Is selective attention accompanied by selective synchronization?

Hypothesis: V1 attended synchronizes with V4. How do we investigate?

- stimulus is dynamic over time, neural signals are subject to considerable noise,
thus oscillatory dynamics (if present) is not "stationary":
use Wavelet transform

- identify frequency band of interest

- amplitude of wavelet transforms is not very important:
compute phase coherence (PC, PLV!)
| N
A B
PLVAB — N ZGXP(Z(¢T T ¢’r ))

r




Phase coherence (PC) between V1 and V4 supports RBS

V1 RF
(not att.)

\ V4 e; Va4

) RF PC(V4, V1 att.) ( A\ RF pc(va, V1 not att)




b) Does selective
attention/synchronization modulate
effective interactions?



Is selective processing accompanied by enhanced signal transfer?

Hypothesis: We know V1 attended synchronizes with V4.
Does it open a 'gate’ for visual information?

- Detecting correlations between V1 and V4 does not give us the answer. We do
not know their contribution to signal processing or signal transfer...

- We need a causal method: here we have to specify the signals the visual system
has to select by constructing the visual stimuli appropriately!
(...alternatively: by activating the 'sending' populations, e.g. by
electric/optogenetic stimulation



Tracking visual information with flickering stimuli

Tag visual stimuli with independent,

random luminance fluctuations : MHWMHLJ‘JW — contribution of
attended signal

— to V4 LFP?

luminance variation, / — contribution of
‘r\'rl_’-l_l attended stimulus non-attended
- F IL[HIW — signal to V4 LFP?

v
...compute frequency-resolved correlation between

visual signal and LFP (spectral coherence)

SV sA(f 1+ 158 (0]
S VISAf )P SN ISE(f, 1)

Modified from Grothe, Rotermund, Neitzel, Mandon, Ernst,
Kreiter and Pawelzik K (2018)., J. Neurosci.,38:3441-3452.

el

luminance variation, I%e.
T
non-attended stimulus (f’ )




Attended signal is enhanced relative to non-attended signal

Grothe |, Rotermund D, Neitzel SD, Mandon S, Ernst

UA, Kreiter AK and Pawelzik K (2018). Attention V4 LFP - att signal V4 LFP - non att signal

Selectively Gates Afferent Signal Transmission to Area O 1 8

V4, ). Neurosci., 38 (14):3441-3452.  7Q LT LT
= 23 B 0.14
T 36 =
> 24 = 0.1
s 16 -
% 11 . 0.06
AY : 0.02
4.8

-200 0 200 -200 0 200
Time delay (ms) Time delay (ms)

Computing a delayed correlation is important:
e.g. transmission delays, finite response times of neural system

Good to have f-dependence. Obtain a transmission characteristics instead of a single value...

SC



c) Do effective interactions rely
on a pulsed-package
transmission scheme?



Routing-by-synchrony makes a specific prediction...

attended signal

* Transfer of attended signal is Gamma-
N phase-specific:
troughs high near peaks, low near troughs

* Routing occurs through
pulsed information packages

\ * The higher the LFP amplitude of the
receiving population in V4, the larger
is signal content.

and splkmg
activity




Quantify visual signal content at specific y-phases and amplitudes

1. Extract y-activity from LFP LFP
(by bandpass filter)
trough 1 . .
falling/ )

peak

2. Determine y-phase and y-
amplitude
(by Hilbert transform)

T

rising

excitability
gamma phase

=
o
=
w
=

-
N
o

50 100 150 200 250 300 350

high amp threshatd™ \ /\

a ~_
lew-ammp-threshold

50 100 150 200 250 300 350
time (ms)

-

gamma amplitude
(normalized)
o
o

o
o



Extracting phase- and amplitude-specific neural signals

We use the marked phases and tagged intervals as selectors to pick the corresponding signal

content from the recorded data:

Phase-specific analysis:

N
|

Resample LFPs or multi-unit
activity (MUA) at excitability
peaks (red dots) or troughs
(blue dots) or ANY other phase

LFP
(normalized)

1
M
I

A d
U

r“‘“*LA

ay’

t“ “_*,‘,

il

of interest...

o

Amplitude-specific analysis:

Extract periods of high -
activity (red regions) or
low y-activity (blue regions)

50

100

150

200

250

300

350



Collapsing the spectra to single numbers

Average spectral coherence over region-of-
interest (ROI) in time and frequency to obtain
just one number SC...

ROI

spectral coherence SC(z, f) e.g., for excitability troughs
; 0.2 : ;

-500 0 500

e.g., for excitability peaks...



signal content
in LFPs

Signal content is higher at excitability peaks

Quantify attended/non-attended stimulus signal content in
phase-specific signals extracted from LFPs:

attended
monkey F monkey B
0.12 012
i 0.1}
0.08} 0.08} ’
0.06¢} 0.06 e
0.04 0.04}
0.02f 0.02¢

0 . . ; . 0 : . :
trough rising peak falling trough trough rising peak falling trough
peak trough
D. Lisitsyn, I. Grothe, A.K. Kreiter, U.A. Ernst (2020). Visual Stimulus

Content in V4 Is Conveyed by Gamma-Rhythmic Information Packages
J. Neurosci., 40 (50) 9650-9662.



Signal content is higher during high-y-amplitude periods

Split analysis into low/high gamma amplitude intervals, and analyze separately

attended
monkey F monkey B

0.12 : : 012
+ ] highAmp
§ 0.1 = lowAmp 0.1
— D"_’ 0.08! [ 95%chance 008!
O L
© = oos! 1 006
o .S
c 0.04} 0.04}
.20
n 0.02} 1 002}

o I— o I

trough rising peak falling trough trough rising peak falling trough

red curve: high-amplitude gamma activity
blue curve: low-amplitude gamma activity



Thanks to YOU and to...:
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Your tutor for
today and LTS -
tomorrow! Klaus Pawelzik
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Exercises for this Lecture
Your gamma-challenge



The experiment! a North

German
spider
monkey :
single

AII.groups: o electrode, V4
- implement (i.e., find out how to use) Wavelet transform 10 x 10
Group A: "Nevada"
- implement spectral coherence (SC) Array, V1

- compute SC between flicker signals A, B and V4 local
field potential (LFP)

- find out which stimulus was attended (i.e. is 'routed’)!

Group B:

- implement computing the phase-locking-value (PLC)
- compute PLVs between V4 LFP and all V1 sites
- find out which V1 site is maximally synchronized with V4!




