pytorch-sbs/network/CPP_Cuda_new_preview/SpikeGeneration2DManyIP.cu

261 lines
9.2 KiB
Text
Raw Permalink Normal View History

2023-01-13 21:33:57 +01:00
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <iostream>
#include "SpikeGeneration2DManyIP.h"
#include "kernel_spike_generation.h"
SpikeGeneration2DManyIP::SpikeGeneration2DManyIP(){
};
SpikeGeneration2DManyIP::~SpikeGeneration2DManyIP(){
};
bool SpikeGeneration2DManyIP::spike_generation_entrypoint(
int64_t input_pointer_addr, int64_t input_dim_0, int64_t input_dim_1,
int64_t input_dim_2, int64_t input_dim_3,
int64_t random_values_pointer_addr, int64_t random_values_dim_0,
int64_t random_values_dim_1, int64_t random_values_dim_2,
int64_t random_values_dim_3, int64_t output_pointer_addr,
int64_t output_dim_0, int64_t output_dim_1, int64_t output_dim_2,
int64_t output_dim_3, int64_t number_of_cpu_processes) {
float* input_pointer = (float*)input_pointer_addr;
float* random_values_pointer = (float*)random_values_pointer_addr;
int64_t* output_pointer = (int64_t*)output_pointer_addr;
// Input
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
// Random
assert((random_values_pointer != nullptr));
assert((random_values_dim_0 > 0));
assert((random_values_dim_1 > 0));
assert((random_values_dim_2 > 0));
assert((random_values_dim_3 > 0));
// Output
assert((output_pointer != nullptr));
assert((output_dim_0 > 0));
assert((output_dim_1 > 0));
assert((output_dim_2 > 0));
assert((output_dim_3 > 0));
// Input
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
// Random
size_t random_values_dim_c0 =
random_values_dim_1 * random_values_dim_2 * random_values_dim_3;
size_t random_values_dim_c1 = random_values_dim_2 * random_values_dim_3;
size_t random_values_dim_c2 = random_values_dim_3;
// Output
size_t output_dim_c0 = output_dim_1 * output_dim_2 * output_dim_3;
size_t output_dim_c1 = output_dim_2 * output_dim_3;
size_t output_dim_c2 = output_dim_3;
size_t number_of_pattern = input_dim_0;
size_t h_dim = input_dim_1;
size_t spike_dim = output_dim_1;
size_t x_dim = output_dim_2;
size_t y_dim = output_dim_2;
if (number_of_cpu_processes > 0) {
omp_set_num_threads(number_of_cpu_processes);
// DEBUG:
// omp_set_num_threads(1);
size_t pattern_id;
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
spike_generation(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, pattern_id);
}
} else {
gpu_spike_generation(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, number_of_pattern);
}
return true;
};
bool SpikeGeneration2DManyIP::spike_generation(
float* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* output_pointer, size_t output_dim_c0,
size_t output_dim_c1, size_t output_dim_c2, size_t x_dim, size_t y_dim,
size_t spike_dim, size_t h_dim, size_t pattern_id) {
size_t counter;
size_t counter_x = 0;
size_t counter_y = 0;
float* p_ptr = nullptr;
int64_t* out_ptr = nullptr;
float* rand_ptr = nullptr;
for (counter_x = 0; counter_x < x_dim; counter_x++) {
for (counter_y = 0; counter_y < y_dim; counter_y++) {
p_ptr = input_pointer + pattern_id * input_dim_c0 +
counter_x * input_dim_c2 + counter_y;
// + counter * input_dim_c1
out_ptr = output_pointer + pattern_id * output_dim_c0 +
counter_x * output_dim_c2 + counter_y;
// + counter * output_dim_c1
rand_ptr = random_values_pointer + pattern_id * random_values_dim_c0 +
counter_x * random_values_dim_c2 + counter_y;
// + counter * random_values_dim_c1
for (counter = 0; counter < spike_dim; counter++) {
out_ptr[counter * output_dim_c1] =
lower_bound(p_ptr, h_dim, input_dim_c1,
rand_ptr[counter * random_values_dim_c1]);
}
}
}
return true;
};
// algorithmic idea stolen from libc++
size_t SpikeGeneration2DManyIP::lower_bound(float* data_ptr, size_t data_length,
size_t data_ptr_stride,
float compare_to_value) {
size_t start_of_range = 0;
size_t length_of_range = data_length;
while (length_of_range != 0) {
size_t half_length = length_of_range >> 1;
size_t actual_position = start_of_range + half_length;
if (data_ptr[actual_position * data_ptr_stride] < compare_to_value) {
start_of_range = ++actual_position;
length_of_range -= half_length + 1;
} else
length_of_range = half_length;
}
return start_of_range;
};
void SpikeGeneration2DManyIP::gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t spike_dim) {
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(1);
occupancy_kernel_spike_generation(dim_x, dim_y, number_of_pattern, spike_dim,
grid_and_thread_settings[0], display_debug);
grid_and_thread_calculated = true;
return;
};
void SpikeGeneration2DManyIP::gpu_occupancy_export(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t spike_dim,
int64_t setting_memory_addr, size_t setting_dim_0, size_t setting_dim_1) {
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, spike_dim);
assert((grid_and_thread_calculated == true));
assert(
(grid_and_thread_settings.size() == SPIKE_GENERATION_NUMBER_OF_KERNELS));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void SpikeGeneration2DManyIP::gpu_occupancy_import(int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == SPIKE_GENERATION_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(SPIKE_GENERATION_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
grid_and_thread_settings[counter_0].resize(
SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
bool SpikeGeneration2DManyIP::gpu_spike_generation(
float* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* output_pointer, size_t output_dim_c0,
size_t output_dim_c1, size_t output_dim_c2, size_t x_dim, size_t y_dim,
size_t spike_dim, size_t h_dim, size_t number_of_pattern) {
if (grid_and_thread_calculated == false) {
gpu_occupancy_measure(x_dim, y_dim, number_of_pattern, spike_dim);
}
assert((grid_and_thread_calculated == true));
cudaError_t status;
assert((x_dim < 65535));
assert((y_dim < 65535));
size_t psxy_block_dim_c0 = spike_dim * x_dim * y_dim;
size_t psxy_block_dim_c1 = x_dim * y_dim;
size_t psxy_block_dim_c2 = y_dim;
kernel_spike_generation<<<
dim3(grid_and_thread_settings[0][0], grid_and_thread_settings[0][1],
grid_and_thread_settings[0][2]),
dim3(grid_and_thread_settings[0][3], grid_and_thread_settings[0][4],
grid_and_thread_settings[0][5])>>>(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, psxy_block_dim_c0,
psxy_block_dim_c1, psxy_block_dim_c2, grid_and_thread_settings[0][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
return true;
};