pytorch-sbs/network/build_optimizer.py

97 lines
3.3 KiB
Python
Raw Permalink Normal View History

2023-01-05 13:23:58 +01:00
# %%
import torch
from network.Parameter import Config
2023-02-04 14:24:47 +01:00
from network.SbSLayer import SbSLayer
2023-02-21 14:37:51 +01:00
from network.NNMFLayer import NNMFLayer
2023-03-15 16:41:33 +01:00
from network.NNMFLayerSbSBP import NNMFLayerSbSBP
2023-02-21 14:37:51 +01:00
2023-01-05 13:23:58 +01:00
from network.Conv2dApproximation import Conv2dApproximation
from network.Adam import Adam
def build_optimizer(
network: torch.nn.Sequential, cfg: Config, logging
) -> list[torch.optim.Optimizer | None]:
parameter_list_weights: list = []
parameter_list_sbs: list = []
# ###############################################
# Put all parameter that needs to be learned
# in a parameter list.
# ###############################################
for id in range(0, len(network)):
2023-02-04 14:24:47 +01:00
if (isinstance(network[id], SbSLayer) is True) and (
2023-01-05 13:23:58 +01:00
network[id]._w_trainable is True
):
parameter_list_weights.append(network[id]._weights)
parameter_list_sbs.append(True)
2023-03-15 16:41:33 +01:00
if (
(isinstance(network[id], NNMFLayer) is True)
or (isinstance(network[id], NNMFLayerSbSBP) is True)
) and (network[id]._w_trainable is True):
2023-02-21 14:37:51 +01:00
parameter_list_weights.append(network[id]._weights)
parameter_list_sbs.append(True)
2023-01-05 13:23:58 +01:00
if (isinstance(network[id], torch.nn.modules.conv.Conv2d) is True) and (
network[id]._w_trainable is True
):
for id_parameter in network[id].parameters():
parameter_list_weights.append(id_parameter)
parameter_list_sbs.append(False)
if (isinstance(network[id], Conv2dApproximation) is True) and (
network[id]._w_trainable is True
):
for id_parameter in network[id].parameters():
parameter_list_weights.append(id_parameter)
parameter_list_sbs.append(False)
logging.info(
f"Number of parameters found to optimize: {len(parameter_list_weights)}"
)
# ###############################################
# Connect the parameters to an optimizer
# ###############################################
if cfg.learning_parameters.optimizer_name == "Adam":
logging.info("Using optimizer: Adam")
if len(parameter_list_weights) == 0:
optimizer_wf: torch.optim.Optimizer | None = None
elif cfg.learning_parameters.learning_rate_gamma_w > 0:
optimizer_wf = Adam(
parameter_list_weights,
parameter_list_sbs,
2023-01-13 21:31:39 +01:00
logging=logging,
2023-01-05 13:23:58 +01:00
lr=cfg.learning_parameters.learning_rate_gamma_w,
)
else:
2023-01-13 21:31:39 +01:00
optimizer_wf = Adam(
parameter_list_weights, parameter_list_sbs, logging=logging
)
2023-01-05 13:23:58 +01:00
elif cfg.learning_parameters.optimizer_name == "SGD":
logging.info("Using optimizer: SGD")
if len(parameter_list_weights) == 0:
optimizer_wf = None
elif cfg.learning_parameters.learning_rate_gamma_w > 0:
optimizer_wf = torch.optim.SGD(
parameter_list_weights,
lr=cfg.learning_parameters.learning_rate_gamma_w,
)
else:
assert cfg.learning_parameters.learning_rate_gamma_w > 0
else:
raise Exception("Optimizer not implemented")
optimizer = []
optimizer.append(optimizer_wf)
return optimizer