pytorch-sbs/train_it.py

272 lines
8.6 KiB
Python
Raw Permalink Normal View History

2023-01-15 14:56:50 +01:00
# %%
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import sys
2023-02-04 14:22:45 +01:00
if len(sys.argv) < 2:
order_id: float | int | None = None
else:
order_id = float(sys.argv[1])
2023-01-15 14:56:50 +01:00
import torch
import dataconf
import logging
from datetime import datetime
2023-02-04 14:22:45 +01:00
import math
2023-01-15 14:56:50 +01:00
from network.Parameter import Config
from network.build_network import build_network
from network.build_optimizer import build_optimizer
from network.build_lr_scheduler import build_lr_scheduler
from network.build_datasets import build_datasets
from network.load_previous_weights import load_previous_weights
from network.loop_train_test import (
loop_test,
loop_train,
run_lr_scheduler,
loop_test_reconstruction,
)
2023-02-06 09:56:18 +01:00
2023-01-15 14:56:50 +01:00
from network.SbSReconstruction import SbSReconstruction
2023-02-04 14:22:45 +01:00
from network.InputSpikeImage import InputSpikeImage
2023-02-06 09:56:18 +01:00
from network.SbSLayer import SbSLayer
2023-01-15 14:56:50 +01:00
from torch.utils.tensorboard import SummaryWriter
2023-02-04 14:22:45 +01:00
if order_id is None:
order_id_string: str = ""
else:
order_id_string = f"_{order_id}"
2023-01-15 14:56:50 +01:00
# ######################################################################
# We want to log what is going on into a file and screen
# ######################################################################
now = datetime.now()
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
logging.basicConfig(
2023-02-04 14:22:45 +01:00
filename=f"log_{dt_string_filename}{order_id_string}.txt",
2023-01-15 14:56:50 +01:00
filemode="w",
level=logging.INFO,
format="%(asctime)s %(message)s",
)
logging.getLogger().addHandler(logging.StreamHandler())
# ######################################################################
# Load the config data from the json file
# ######################################################################
if os.path.exists("def.json") is False:
raise Exception("Config file not found! def.json")
if os.path.exists("network.json") is False:
raise Exception("Config file not found! network.json")
if os.path.exists("dataset.json") is False:
raise Exception("Config file not found! dataset.json")
2023-02-04 14:22:45 +01:00
cfg = (
dataconf.multi.file("network.json").file("dataset.json").file("def.json").on(Config)
)
2023-01-15 14:56:50 +01:00
logging.info(cfg)
logging.info(f"Number of spikes: {cfg.number_of_spikes}")
logging.info(f"Cooldown after spikes: {cfg.cooldown_after_number_of_spikes}")
logging.info(f"Reduction cooldown: {cfg.reduction_cooldown}")
logging.info("")
logging.info(f"Epsilon 0: {cfg.epsilon_0}")
logging.info(f"Batch size: {cfg.batch_size}")
logging.info(f"Data mode: {cfg.data_mode}")
logging.info("")
logging.info("*** Config loaded.")
logging.info("")
2023-02-04 14:22:45 +01:00
tb = SummaryWriter(log_dir=f"{cfg.log_path}{order_id_string}")
2023-01-15 14:56:50 +01:00
# ###########################################
# GPU Yes / NO ?
# ###########################################
default_dtype = torch.float32
torch.set_default_dtype(default_dtype)
torch_device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
use_gpu: bool = True if torch.cuda.is_available() else False
logging.info(f"Using {torch_device} device")
device = torch.device(torch_device)
# ######################################################################
# Prepare the test and training data
# ######################################################################
the_dataset_train, the_dataset_test, my_loader_test, my_loader_train = build_datasets(
cfg
)
logging.info("*** Data loaded.")
# ######################################################################
# Build the network, Optimizer, and LR Scheduler #
# ######################################################################
network = build_network(
cfg=cfg, device=device, default_dtype=default_dtype, logging=logging
)
logging.info("")
optimizer = build_optimizer(network=network, cfg=cfg, logging=logging)
lr_scheduler = build_lr_scheduler(optimizer=optimizer, cfg=cfg, logging=logging)
logging.info("*** Network generated.")
load_previous_weights(
network=network,
overload_path=cfg.learning_parameters.overload_path,
logging=logging,
device=device,
default_dtype=default_dtype,
2023-02-04 14:22:45 +01:00
order_id=order_id,
2023-01-15 14:56:50 +01:00
)
logging.info("")
2023-02-04 14:22:45 +01:00
# Fiddling around with the amount of spikes in the input layer
if order_id is not None:
image_size_x = (
the_dataset_train.initial_size[0] - 2 * cfg.augmentation.crop_width_in_pixel
)
image_size_y = (
the_dataset_train.initial_size[1] - 2 * cfg.augmentation.crop_width_in_pixel
)
number_of_spikes_in_input_layer = int(
math.ceil(
order_id * the_dataset_train.channel_size * image_size_x * image_size_y
)
)
assert len(cfg.number_of_spikes) > 0
cfg.number_of_spikes[0] = number_of_spikes_in_input_layer
if isinstance(network[0], InputSpikeImage) is True:
network[0].number_of_spikes = number_of_spikes_in_input_layer
2023-02-06 09:56:18 +01:00
if isinstance(network[0], SbSLayer) is True:
network[0]._number_of_spikes = number_of_spikes_in_input_layer
2023-02-04 14:22:45 +01:00
2023-01-15 14:56:50 +01:00
last_test_performance: float = -1.0
with torch.no_grad():
if cfg.learning_parameters.learning_active is True:
while cfg.epoch_id < cfg.epoch_id_max:
# ##############################################
# Run a training data epoch
# ##############################################
network.train()
(
my_loss_for_batch,
performance_for_batch,
full_loss,
full_correct,
) = loop_train(
cfg=cfg,
network=network,
my_loader_train=my_loader_train,
the_dataset_train=the_dataset_train,
optimizer=optimizer,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=tb,
adapt_learning_rate=cfg.learning_parameters.adapt_learning_rate_after_minibatch,
lr_scheduler=lr_scheduler,
last_test_performance=last_test_performance,
2023-02-04 14:22:45 +01:00
order_id=order_id,
2023-01-15 14:56:50 +01:00
)
# Let the torch learning rate scheduler update the
# learning rates of the optimiers
if cfg.learning_parameters.adapt_learning_rate_after_minibatch is False:
run_lr_scheduler(
cfg=cfg,
lr_scheduler=lr_scheduler,
optimizer=optimizer,
performance_for_batch=performance_for_batch,
my_loss_for_batch=my_loss_for_batch,
tb=tb,
logging=logging,
)
# ##############################################
# Run test data
# ##############################################
network.eval()
if isinstance(network[-1], SbSReconstruction) is False:
last_test_performance = loop_test(
epoch_id=cfg.epoch_id,
cfg=cfg,
network=network,
my_loader_test=my_loader_test,
the_dataset_test=the_dataset_test,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=tb,
)
else:
last_test_performance = loop_test_reconstruction(
epoch_id=cfg.epoch_id,
cfg=cfg,
network=network,
my_loader_test=my_loader_test,
the_dataset_test=the_dataset_test,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=tb,
)
# Next epoch
cfg.epoch_id += 1
else:
# ##############################################
# Run test data
# ##############################################
network.eval()
if isinstance(network[-1], SbSReconstruction) is False:
last_test_performance = loop_test(
epoch_id=cfg.epoch_id,
cfg=cfg,
network=network,
my_loader_test=my_loader_test,
the_dataset_test=the_dataset_test,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=tb,
)
else:
last_test_performance = loop_test_reconstruction(
epoch_id=cfg.epoch_id,
cfg=cfg,
network=network,
my_loader_test=my_loader_test,
the_dataset_test=the_dataset_test,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=tb,
)
tb.close()
# %%