2023-01-05 13:23:58 +01:00
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import torchvision as tv # type: ignore
|
|
|
|
from network.Parameter import Config
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetMaster(torch.utils.data.Dataset, ABC):
|
|
|
|
|
|
|
|
path_label: str
|
|
|
|
label_storage: np.ndarray
|
|
|
|
pattern_storage: np.ndarray
|
|
|
|
number_of_pattern: int
|
|
|
|
mean: list[float]
|
2023-02-04 14:24:47 +01:00
|
|
|
initial_size: list[int]
|
|
|
|
channel_size: int
|
2023-01-05 13:23:58 +01:00
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if train is True:
|
|
|
|
self.label_storage = np.load(path_label + "/TrainLabelStorage.npy")
|
|
|
|
else:
|
|
|
|
self.label_storage = np.load(path_label + "/TestLabelStorage.npy")
|
|
|
|
|
|
|
|
if train is True:
|
|
|
|
self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy")
|
|
|
|
else:
|
|
|
|
self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy")
|
|
|
|
|
|
|
|
self.number_of_pattern = self.label_storage.shape[0]
|
|
|
|
|
|
|
|
self.mean = []
|
|
|
|
|
2023-02-04 14:24:47 +01:00
|
|
|
self.initial_size = [0, 0]
|
|
|
|
self.channel_size = 0
|
|
|
|
|
2023-01-05 13:23:58 +01:00
|
|
|
def __len__(self) -> int:
|
|
|
|
return self.number_of_pattern
|
|
|
|
|
|
|
|
# Get one pattern at position index
|
|
|
|
@abstractmethod
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetMNIST(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
2023-02-04 14:24:47 +01:00
|
|
|
self.initial_size = [28, 28]
|
|
|
|
self.channel_size = 1
|
|
|
|
|
2023-01-05 13:23:58 +01:00
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, 0:1, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
gray = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
gray = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetFashionMNIST(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
2023-02-04 14:24:47 +01:00
|
|
|
self.initial_size = [28, 28]
|
|
|
|
self.channel_size = 1
|
|
|
|
|
2023-01-05 13:23:58 +01:00
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, 0:1, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
gray = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
|
|
|
tv.transforms.ColorJitter(
|
|
|
|
brightness=cfg.augmentation.jitter_brightness,
|
|
|
|
contrast=cfg.augmentation.jitter_contrast,
|
|
|
|
saturation=cfg.augmentation.jitter_saturation,
|
|
|
|
hue=cfg.augmentation.jitter_hue,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
gray = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetCIFAR(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1)
|
|
|
|
)
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
2023-02-04 14:24:47 +01:00
|
|
|
self.initial_size = [32, 32]
|
|
|
|
self.channel_size = 3
|
|
|
|
|
2023-01-05 13:23:58 +01:00
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, :, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. returned.
|
|
|
|
|
|
|
|
This is a 3 channel version (e.g. r,g,b channels).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 3
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
r = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
g = pattern[:, 1:2, :, :] + 1e-20
|
|
|
|
b = pattern[:, 2:3, :, :] + 1e-20
|
|
|
|
|
|
|
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
|
|
|
return new_tensor
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. is randomly horizontally flipped
|
|
|
|
3. is randomly color jitteres
|
|
|
|
4. returned.
|
|
|
|
|
|
|
|
This is a 3 channel version (e.g. r,g,b channels).
|
|
|
|
"""
|
|
|
|
assert len(cfg.image_statistics.mean) == 3
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
|
|
|
tv.transforms.ColorJitter(
|
|
|
|
brightness=cfg.augmentation.jitter_brightness,
|
|
|
|
contrast=cfg.augmentation.jitter_contrast,
|
|
|
|
saturation=cfg.augmentation.jitter_saturation,
|
|
|
|
hue=cfg.augmentation.jitter_hue,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
r = pattern[:, 0:1, :, :] + 1e-20
|
|
|
|
g = pattern[:, 1:2, :, :] + 1e-20
|
|
|
|
b = pattern[:, 2:3, :, :] + 1e-20
|
|
|
|
|
|
|
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
|
|
|
return new_tensor
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
pass
|