pytorch-sbs/network/CPP_Cuda_new_preview/MultiApp.cu

274 lines
9.3 KiB
Text
Raw Normal View History

2023-01-13 21:33:57 +01:00
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <vector>
#include "MultiApp.h"
#include "approximation_multiplication_function.h"
#include "kernel_approximation_multiplication.h"
MultiApp::MultiApp(){
};
MultiApp::~MultiApp(){
};
bool MultiApp::update(float* np_input_pointer, float* np_weight_pointer,
float* np_output_pointer, int64_t pattern_dim,
int64_t feature_dim, int64_t x_dim, int64_t y_dim,
int64_t input_channel_dim, int64_t id_pattern,
bool approximation_enable, int64_t number_of_trunc_bits,
int64_t number_of_frac_bits) {
assert((id_pattern >= 0));
assert((id_pattern < pattern_dim));
float* np_input_pointer_pattern;
float* np_output_pointer_pattern;
float* input_ptr;
float* output_ptr;
float* w_ptr;
uint64_t pattern_size = input_channel_dim;
std::vector<float> ap_h_vector;
ap_h_vector.resize(pattern_size);
float* ap_h_ptr = ap_h_vector.data();
std::vector<uint32_t> ap_x_vector;
ap_x_vector.resize(pattern_size);
uint32_t* ap_x_ptr = ap_x_vector.data();
std::vector<uint32_t> ap_y_vector;
ap_y_vector.resize(pattern_size);
uint32_t* ap_y_ptr = ap_y_vector.data();
std::vector<uint32_t> ap_x_exponent_vector;
ap_x_exponent_vector.resize(pattern_size);
uint32_t* ap_x_exponent_ptr = ap_x_exponent_vector.data();
std::vector<uint32_t> ap_y_exponent_vector;
ap_y_exponent_vector.resize(pattern_size);
uint32_t* ap_y_exponent_ptr = ap_y_exponent_vector.data();
std::vector<uint32_t> ap_h_exponent_vector;
ap_h_exponent_vector.resize(pattern_size);
uint32_t* ap_h_exponent_ptr = ap_h_exponent_vector.data();
std::vector<uint64_t> ap_res_vector;
ap_res_vector.resize(pattern_size);
uint64_t* ap_res_ptr = ap_res_vector.data();
uint32_t ap_mask = static_cast<uint64_t>(pow(2, number_of_trunc_bits)) - 1;
std::vector<uint32_t> sign_temp_vector;
sign_temp_vector.resize(pattern_size);
uint32_t* sign_temp_ptr = sign_temp_vector.data();
uint64_t input_pattern_size = input_channel_dim * x_dim * y_dim;
uint64_t output_pattern_size = feature_dim * x_dim * y_dim;
np_input_pointer_pattern = np_input_pointer + id_pattern * input_pattern_size;
np_output_pointer_pattern =
np_output_pointer + id_pattern * output_pattern_size;
uint64_t counter;
uint64_t counter_x;
uint64_t counter_y;
uint64_t counter_feature;
uint64_t pos_xy;
uint64_t pos_xy_if;
float temp_sum;
uint64_t pattern_c_2 = x_dim * y_dim;
for (counter_x = 0; counter_x < x_dim; counter_x++) {
for (counter_y = 0; counter_y < y_dim; counter_y++) {
pos_xy = counter_y + counter_x * y_dim;
for (counter_feature = 0; counter_feature < feature_dim;
counter_feature++) {
pos_xy_if = counter_feature * pattern_c_2 + pos_xy;
input_ptr = np_input_pointer_pattern + pos_xy;
output_ptr = np_output_pointer_pattern + pos_xy_if;
w_ptr = np_weight_pointer + counter_feature * input_channel_dim;
#pragma omp simd
for (counter = 0; counter < pattern_size; counter++) {
ap_h_ptr[counter] = input_ptr[counter * pattern_c_2];
}
approximation_multiplication_function(
ap_h_ptr, w_ptr, pattern_size, number_of_trunc_bits,
number_of_frac_bits, ap_x_ptr, ap_y_ptr, ap_x_exponent_ptr,
ap_y_exponent_ptr, ap_h_exponent_ptr, ap_mask, ap_res_ptr,
sign_temp_ptr, approximation_enable);
temp_sum = 0.0;
#pragma omp simd reduction(+ : temp_sum)
for (counter = 0; counter < pattern_size; counter++) {
temp_sum += ap_h_ptr[counter];
}
output_ptr[0] = temp_sum;
}
}
}
return true;
};
bool MultiApp::update_entrypoint(
int64_t np_input_pointer_addr, int64_t np_weight_pointer_addr,
int64_t np_output_pointer_addr, int64_t pattern_dim, int64_t feature_dim,
int64_t x_dim, int64_t y_dim, int64_t input_channel_dim,
int64_t number_of_processes, bool approximation_enable,
int64_t number_of_trunc_bits, int64_t number_of_frac) {
int64_t number_of_pattern = pattern_dim;
int64_t pattern_id;
float* np_input_pointer = (float*)np_input_pointer_addr;
float* np_weight_pointer = (float*)np_weight_pointer_addr;
float* np_output_pointer = (float*)np_output_pointer_addr;
assert((np_input_pointer != nullptr));
assert((np_output_pointer != nullptr));
assert((np_weight_pointer != nullptr));
assert((pattern_dim > 0));
assert((feature_dim > 0));
assert((x_dim > 0));
assert((y_dim > 0));
assert((input_channel_dim > 0));
if (number_of_processes > 0) {
omp_set_num_threads(number_of_processes);
// For debugging: Only one thread
// omp_set_num_threads(1);
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
update(np_input_pointer, np_weight_pointer, np_output_pointer,
pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim,
pattern_id, approximation_enable, number_of_trunc_bits,
number_of_frac);
}
} else {
update_gpu(np_input_pointer, np_weight_pointer, np_output_pointer,
pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim,
approximation_enable, number_of_trunc_bits, number_of_frac);
}
return true;
};
void MultiApp::gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim) {
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(1);
occupancy_kernel_approximation_multiplication(
dim_x, dim_y, number_of_pattern, h_dim, grid_and_thread_settings[0],
display_debug);
grid_and_thread_calculated = true;
return;
};
void MultiApp::gpu_occupancy_export(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
assert((grid_and_thread_calculated == true));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void MultiApp::gpu_occupancy_import(int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == APPROXI_MULTI_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(APPROXI_MULTI_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
grid_and_thread_settings[counter_0].resize(
APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
void MultiApp::update_gpu(float* np_input_pointer, float* np_weight_pointer,
float* np_output_pointer, uint64_t pattern_dim,
uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim,
uint64_t input_channel_dim, bool approximation_enable,
uint64_t number_of_trunc_bits,
uint64_t number_of_frac_bits) {
if (grid_and_thread_calculated == false) {
gpu_occupancy_measure(x_dim, y_dim, pattern_dim, feature_dim);
}
assert((grid_and_thread_calculated == true));
uint32_t ap_mask = static_cast<uint64_t>(pow(2, number_of_trunc_bits)) - 1;
// std::cout << approximation_enable << std::endl;
// std::cout << number_of_trunc_bits << std::endl;
// std::cout << number_of_frac_bits << std::endl;
cudaError_t status;
size_t pfxy_block_dim_c0 = feature_dim * x_dim * y_dim;
size_t pfxy_block_dim_c1 = x_dim * y_dim;
size_t pfxy_block_dim_c2 = y_dim;
kernel_approximation_multiplication<<<
dim3(grid_and_thread_settings[0][0], grid_and_thread_settings[0][1],
grid_and_thread_settings[0][2]),
dim3(grid_and_thread_settings[0][3], grid_and_thread_settings[0][4],
grid_and_thread_settings[0][5])>>>(
np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim,
feature_dim, x_dim, y_dim, input_channel_dim,
grid_and_thread_settings[0][6], (x_dim * y_dim), number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask, pfxy_block_dim_c0,
pfxy_block_dim_c1, pfxy_block_dim_c2);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};