2022-04-30 02:07:09 +02:00
|
|
|
# MIT License
|
|
|
|
# Copyright 2022 University of Bremen
|
|
|
|
#
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
# a copy of this software and associated documentation files (the "Software"),
|
|
|
|
# to deal in the Software without restriction, including without limitation
|
|
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
|
|
#
|
|
|
|
# The above copyright notice and this permission notice shall be included
|
|
|
|
# in all copies or substantial portions of the Software.
|
|
|
|
#
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
|
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
|
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
|
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
|
|
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# David Rotermund ( davrot@uni-bremen.de )
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Release history:
|
|
|
|
# ================
|
|
|
|
# 1.0.0 -- 01.05.2022: first release
|
|
|
|
#
|
|
|
|
#
|
|
|
|
|
|
|
|
# %%
|
|
|
|
import os
|
|
|
|
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import sys
|
|
|
|
import torch
|
|
|
|
import time
|
|
|
|
import dataconf
|
|
|
|
import logging
|
|
|
|
from datetime import datetime
|
2022-04-30 17:46:17 +02:00
|
|
|
import glob
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
from Dataset import (
|
|
|
|
DatasetMaster,
|
|
|
|
DatasetCIFAR,
|
|
|
|
DatasetMNIST,
|
|
|
|
DatasetFashionMNIST,
|
|
|
|
)
|
|
|
|
from Parameter import Config
|
|
|
|
from SbS import SbS
|
|
|
|
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
tb = SummaryWriter()
|
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# We want to log what is going on into a file and screen #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
now = datetime.now()
|
|
|
|
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
|
|
|
|
logging.basicConfig(
|
|
|
|
filename="log_" + dt_string_filename + ".txt",
|
|
|
|
filemode="w",
|
|
|
|
level=logging.INFO,
|
|
|
|
format="%(asctime)s %(message)s",
|
|
|
|
)
|
|
|
|
logging.getLogger().addHandler(logging.StreamHandler())
|
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# Load the config data from the json file #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
if len(sys.argv) < 2:
|
|
|
|
raise Exception("Argument: Config file name is missing")
|
|
|
|
|
|
|
|
filename: str = sys.argv[1]
|
|
|
|
|
|
|
|
if os.path.exists(filename) is False:
|
|
|
|
raise Exception(f"Config file not found! {filename}")
|
|
|
|
|
|
|
|
cfg = dataconf.file(filename, Config)
|
|
|
|
logging.info(f"Using configuration file: {filename}")
|
|
|
|
|
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# Prepare the test and training data #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
# Load the input data
|
|
|
|
the_dataset_train: DatasetMaster
|
|
|
|
the_dataset_test: DatasetMaster
|
|
|
|
if cfg.data_mode == "CIFAR10":
|
|
|
|
the_dataset_train = DatasetCIFAR(
|
|
|
|
train=True, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
the_dataset_test = DatasetCIFAR(
|
|
|
|
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
elif cfg.data_mode == "MNIST":
|
|
|
|
the_dataset_train = DatasetMNIST(
|
|
|
|
train=True, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
the_dataset_test = DatasetMNIST(
|
|
|
|
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
elif cfg.data_mode == "MNIST_FASHION":
|
|
|
|
the_dataset_train = DatasetFashionMNIST(
|
|
|
|
train=True, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
the_dataset_test = DatasetFashionMNIST(
|
|
|
|
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise Exception("data_mode unknown")
|
|
|
|
|
|
|
|
cfg.image_statistics.mean = the_dataset_train.mean
|
|
|
|
|
|
|
|
# The basic size
|
|
|
|
cfg.image_statistics.the_size = [
|
|
|
|
the_dataset_train.pattern_storage.shape[2],
|
|
|
|
the_dataset_train.pattern_storage.shape[3],
|
|
|
|
]
|
|
|
|
|
|
|
|
# Minus the stuff we cut away in the pattern filter
|
|
|
|
cfg.image_statistics.the_size[0] -= 2 * cfg.augmentation.crop_width_in_pixel
|
|
|
|
cfg.image_statistics.the_size[1] -= 2 * cfg.augmentation.crop_width_in_pixel
|
|
|
|
|
|
|
|
my_loader_test: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
|
|
|
|
the_dataset_test, batch_size=cfg.batch_size, shuffle=False
|
|
|
|
)
|
|
|
|
my_loader_train: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
|
|
|
|
the_dataset_train, batch_size=cfg.batch_size, shuffle=True
|
|
|
|
)
|
|
|
|
|
|
|
|
logging.info("*** Data loaded.")
|
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# Build the network #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
wf: list[np.ndarray] = []
|
|
|
|
eps_xy: list[np.ndarray] = []
|
|
|
|
network = torch.nn.Sequential()
|
|
|
|
for id in range(0, len(cfg.network_structure.is_pooling_layer)):
|
|
|
|
if id == 0:
|
|
|
|
input_size: list[int] = cfg.image_statistics.the_size
|
|
|
|
else:
|
|
|
|
input_size = network[id - 1].output_size.tolist()
|
|
|
|
|
|
|
|
network.append(
|
|
|
|
SbS(
|
|
|
|
number_of_input_neurons=cfg.network_structure.forward_neuron_numbers[id][0],
|
|
|
|
number_of_neurons=cfg.network_structure.forward_neuron_numbers[id][1],
|
|
|
|
input_size=input_size,
|
|
|
|
forward_kernel_size=cfg.network_structure.forward_kernel_size[id],
|
|
|
|
number_of_spikes=cfg.number_of_spikes,
|
|
|
|
epsilon_t=cfg.get_epsilon_t(),
|
|
|
|
epsilon_xy_intitial=cfg.learning_parameters.eps_xy_intitial,
|
|
|
|
epsilon_0=cfg.epsilon_0,
|
|
|
|
weight_noise_amplitude=cfg.learning_parameters.weight_noise_amplitude,
|
|
|
|
is_pooling_layer=cfg.network_structure.is_pooling_layer[id],
|
|
|
|
strides=cfg.network_structure.strides[id],
|
|
|
|
dilation=cfg.network_structure.dilation[id],
|
|
|
|
padding=cfg.network_structure.padding[id],
|
|
|
|
alpha_number_of_iterations=cfg.learning_parameters.alpha_number_of_iterations,
|
|
|
|
number_of_cpu_processes=cfg.number_of_cpu_processes,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
eps_xy.append(network[id].epsilon_xy.detach().clone().numpy())
|
|
|
|
wf.append(network[id].weights.detach().clone().numpy())
|
|
|
|
|
|
|
|
logging.info("*** Network generated.")
|
|
|
|
|
|
|
|
for id in range(0, len(network)):
|
|
|
|
# Load previous weights and epsilon xy
|
|
|
|
if cfg.learning_step > 0:
|
|
|
|
network[id].weights = torch.tensor(
|
|
|
|
np.load(
|
|
|
|
cfg.weight_path
|
|
|
|
+ "/Weight_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy"
|
|
|
|
),
|
|
|
|
dtype=torch.float64,
|
|
|
|
)
|
|
|
|
|
|
|
|
wf[id] = np.load(
|
|
|
|
cfg.weight_path
|
|
|
|
+ "/Weight_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy"
|
|
|
|
)
|
|
|
|
|
|
|
|
network[id].epsilon_xy = torch.tensor(
|
|
|
|
np.load(
|
|
|
|
cfg.eps_xy_path
|
|
|
|
+ "/EpsXY_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy"
|
|
|
|
),
|
|
|
|
dtype=torch.float64,
|
|
|
|
)
|
|
|
|
|
|
|
|
eps_xy[id] = np.load(
|
|
|
|
cfg.eps_xy_path
|
|
|
|
+ "/EpsXY_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy"
|
|
|
|
)
|
|
|
|
|
2022-04-30 17:46:17 +02:00
|
|
|
for id in range(0, len(network)):
|
|
|
|
|
2022-04-30 02:07:09 +02:00
|
|
|
# Are there weights that overwrite the initial weights?
|
2022-04-30 17:46:17 +02:00
|
|
|
file_to_load = glob.glob(
|
|
|
|
cfg.learning_parameters.overload_path + "/Weight_L" + str(id) + "*.npy"
|
2022-04-30 02:07:09 +02:00
|
|
|
)
|
2022-04-30 17:46:17 +02:00
|
|
|
|
|
|
|
if len(file_to_load) > 1:
|
|
|
|
raise Exception(
|
|
|
|
f"Too many previous weights files {cfg.learning_parameters.overload_path}/Weight_L{id}*.npy"
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(file_to_load) == 1:
|
2022-04-30 02:07:09 +02:00
|
|
|
network[id].weights = torch.tensor(
|
2022-04-30 17:46:17 +02:00
|
|
|
np.load(file_to_load[0]),
|
2022-04-30 02:07:09 +02:00
|
|
|
dtype=torch.float64,
|
|
|
|
)
|
2022-04-30 17:46:17 +02:00
|
|
|
wf[id] = np.load(file_to_load[0])
|
|
|
|
logging.info(f"File used: {file_to_load[0]}")
|
|
|
|
|
|
|
|
# Are there epsinlon xy files that overwrite the initial epsilon xy?
|
|
|
|
file_to_load = glob.glob(
|
|
|
|
cfg.learning_parameters.overload_path + "/EpsXY_L" + str(id) + "*.npy"
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(file_to_load) > 1:
|
|
|
|
raise Exception(
|
|
|
|
f"Too many previous epsilon xy files {cfg.learning_parameters.overload_path}/EpsXY_L{id}*.npy"
|
|
|
|
)
|
2022-04-30 02:07:09 +02:00
|
|
|
|
2022-04-30 17:46:17 +02:00
|
|
|
if len(file_to_load) == 1:
|
2022-04-30 02:07:09 +02:00
|
|
|
network[id].epsilon_xy = torch.tensor(
|
2022-04-30 17:46:17 +02:00
|
|
|
np.load(file_to_load[0]),
|
2022-04-30 02:07:09 +02:00
|
|
|
dtype=torch.float64,
|
|
|
|
)
|
2022-04-30 17:46:17 +02:00
|
|
|
eps_xy[id] = np.load(file_to_load[0])
|
|
|
|
logging.info(f"File used: {file_to_load[0]}")
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# Optimizer and LR Scheduler #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
# I keep weights and epsilon xy seperate to
|
|
|
|
# set the initial learning rate independently
|
|
|
|
parameter_list_weights: list = []
|
|
|
|
parameter_list_epsilon_xy: list = []
|
|
|
|
|
|
|
|
for id in range(0, len(network)):
|
|
|
|
parameter_list_weights.append(network[id]._weights)
|
|
|
|
parameter_list_epsilon_xy.append(network[id]._epsilon_xy)
|
|
|
|
|
|
|
|
if cfg.learning_parameters.optimizer_name == "Adam":
|
|
|
|
if cfg.learning_parameters.learning_rate_gamma_w > 0:
|
|
|
|
optimizer_wf: torch.optim.Optimizer = torch.optim.Adam(
|
|
|
|
parameter_list_weights,
|
|
|
|
lr=cfg.learning_parameters.learning_rate_gamma_w,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
optimizer_wf = torch.optim.Adam(
|
|
|
|
parameter_list_weights,
|
|
|
|
)
|
|
|
|
|
|
|
|
if cfg.learning_parameters.learning_rate_gamma_eps_xy > 0:
|
|
|
|
optimizer_eps: torch.optim.Optimizer = torch.optim.Adam(
|
|
|
|
parameter_list_epsilon_xy,
|
|
|
|
lr=cfg.learning_parameters.learning_rate_gamma_eps_xy,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
optimizer_eps = torch.optim.Adam(
|
|
|
|
parameter_list_epsilon_xy,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise Exception("Optimizer not implemented")
|
|
|
|
|
|
|
|
if cfg.learning_parameters.lr_schedule_name == "ReduceLROnPlateau":
|
2022-04-30 13:40:51 +02:00
|
|
|
if cfg.learning_parameters.lr_scheduler_patience_w > 0:
|
|
|
|
lr_scheduler_wf = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
|
|
|
optimizer_wf,
|
|
|
|
factor=cfg.learning_parameters.lr_scheduler_factor_w,
|
|
|
|
patience=cfg.learning_parameters.lr_scheduler_patience_w,
|
|
|
|
)
|
2022-04-30 02:07:09 +02:00
|
|
|
|
2022-04-30 13:40:51 +02:00
|
|
|
if cfg.learning_parameters.lr_scheduler_patience_eps_xy > 0:
|
|
|
|
lr_scheduler_eps = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
|
|
|
optimizer_eps,
|
|
|
|
factor=cfg.learning_parameters.lr_scheduler_factor_eps_xy,
|
|
|
|
patience=cfg.learning_parameters.lr_scheduler_patience_eps_xy,
|
|
|
|
)
|
2022-04-30 02:07:09 +02:00
|
|
|
else:
|
|
|
|
raise Exception("lr_scheduler not implemented")
|
|
|
|
|
|
|
|
logging.info("*** Optimizer prepared.")
|
|
|
|
|
|
|
|
|
|
|
|
#######################################################################
|
|
|
|
# Some variable declarations #
|
|
|
|
#######################################################################
|
|
|
|
|
|
|
|
test_correct: int = 0
|
|
|
|
test_all: int = 0
|
|
|
|
test_complete: int = the_dataset_test.__len__()
|
|
|
|
|
|
|
|
train_correct: int = 0
|
|
|
|
train_all: int = 0
|
|
|
|
train_complete: int = the_dataset_train.__len__()
|
|
|
|
|
|
|
|
train_number_of_processed_pattern: int = 0
|
|
|
|
|
|
|
|
train_loss: np.ndarray = np.zeros((1), dtype=np.float32)
|
|
|
|
|
|
|
|
last_test_performance: float = -1.0
|
|
|
|
|
|
|
|
|
|
|
|
logging.info("")
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
if cfg.learning_parameters.learning_active is True:
|
|
|
|
while True:
|
|
|
|
|
|
|
|
###############################################
|
|
|
|
# Run a training data batch #
|
|
|
|
###############################################
|
|
|
|
|
|
|
|
for h_x, h_x_labels in my_loader_train:
|
|
|
|
time_0: float = time.perf_counter()
|
|
|
|
|
|
|
|
if train_number_of_processed_pattern == 0:
|
|
|
|
# Reset the gradient of the torch optimizers
|
|
|
|
optimizer_wf.zero_grad()
|
|
|
|
optimizer_eps.zero_grad()
|
|
|
|
|
|
|
|
with torch.enable_grad():
|
|
|
|
|
|
|
|
h_collection = []
|
|
|
|
h_collection.append(
|
|
|
|
the_dataset_train.pattern_filter_train(h_x, cfg).type(
|
|
|
|
dtype=torch.float64
|
|
|
|
)
|
|
|
|
)
|
|
|
|
for id in range(0, len(network)):
|
|
|
|
h_collection.append(network[id](h_collection[-1]))
|
|
|
|
|
|
|
|
# Convert label into one hot
|
|
|
|
target_one_hot: torch.Tensor = torch.zeros(
|
|
|
|
(
|
|
|
|
h_x_labels.shape[0],
|
|
|
|
int(cfg.network_structure.number_of_output_neurons),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
target_one_hot.scatter_(
|
|
|
|
1, h_x_labels.unsqueeze(1), torch.ones((h_x_labels.shape[0], 1))
|
|
|
|
)
|
|
|
|
target_one_hot = (
|
|
|
|
target_one_hot.unsqueeze(2)
|
|
|
|
.unsqueeze(2)
|
|
|
|
.type(dtype=torch.float64)
|
|
|
|
)
|
|
|
|
|
|
|
|
# through the loss functions
|
|
|
|
h_y1 = torch.log(h_collection[-1])
|
|
|
|
h_y2 = torch.nan_to_num(h_y1, nan=0.0, posinf=0.0, neginf=0.0)
|
|
|
|
|
|
|
|
my_loss: torch.Tensor = (
|
|
|
|
(
|
|
|
|
torch.nn.functional.mse_loss(
|
|
|
|
h_collection[-1], target_one_hot, reduction="none"
|
|
|
|
)
|
|
|
|
* cfg.learning_parameters.loss_coeffs_mse
|
|
|
|
+ torch.nn.functional.kl_div(
|
|
|
|
h_y2, target_one_hot, reduction="none"
|
|
|
|
)
|
|
|
|
* cfg.learning_parameters.loss_coeffs_kldiv
|
|
|
|
)
|
|
|
|
/ (
|
|
|
|
cfg.learning_parameters.loss_coeffs_kldiv
|
|
|
|
+ cfg.learning_parameters.loss_coeffs_mse
|
|
|
|
)
|
|
|
|
).mean()
|
|
|
|
|
|
|
|
time_1: float = time.perf_counter()
|
|
|
|
|
|
|
|
my_loss.backward()
|
|
|
|
my_loss_float = my_loss.item()
|
|
|
|
time_2: float = time.perf_counter()
|
|
|
|
|
|
|
|
train_correct += (
|
|
|
|
(h_collection[-1].argmax(dim=1).squeeze() == h_x_labels)
|
|
|
|
.sum()
|
|
|
|
.numpy()
|
|
|
|
)
|
|
|
|
train_all += h_collection[-1].shape[0]
|
|
|
|
|
|
|
|
performance: float = 100.0 * train_correct / train_all
|
|
|
|
|
|
|
|
time_measure_a: float = time_1 - time_0
|
|
|
|
|
|
|
|
logging.info(
|
|
|
|
(
|
|
|
|
f"{cfg.learning_step:^6} Training \t{train_all^6} pattern "
|
|
|
|
f"with {performance/100.0:^6.2%} "
|
|
|
|
f"\t\tForward time: \t{time_measure_a:^6.2f}sec"
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
train_loss[0] += my_loss_float
|
|
|
|
train_number_of_processed_pattern += h_collection[-1].shape[0]
|
|
|
|
|
|
|
|
time_measure_b: float = time_2 - time_1
|
|
|
|
|
|
|
|
logging.info(
|
|
|
|
(
|
|
|
|
f"\t\t\tLoss: {train_loss[0]/train_number_of_processed_pattern:^15.3e} "
|
|
|
|
f"\t\t\tBackward time: \t{time_measure_b:^6.2f}sec "
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
if (
|
|
|
|
train_number_of_processed_pattern
|
|
|
|
>= cfg.get_update_after_x_pattern()
|
|
|
|
):
|
|
|
|
logging.info("\t\t\t*** Updating the weights ***")
|
|
|
|
my_loss_for_batch: float = (
|
|
|
|
train_loss[0] / train_number_of_processed_pattern
|
|
|
|
)
|
|
|
|
|
|
|
|
optimizer_wf.step()
|
|
|
|
optimizer_eps.step()
|
|
|
|
|
|
|
|
for id in range(0, len(network)):
|
|
|
|
if cfg.network_structure.w_trainable[id] is True:
|
|
|
|
network[id].norm_weights()
|
|
|
|
network[id].threshold_weights(
|
|
|
|
cfg.learning_parameters.learning_rate_threshold_w
|
|
|
|
)
|
|
|
|
network[id].norm_weights()
|
|
|
|
else:
|
|
|
|
network[id].weights = torch.tensor(
|
|
|
|
wf[id], dtype=torch.float64
|
|
|
|
)
|
|
|
|
|
|
|
|
if cfg.network_structure.eps_xy_trainable[id] is True:
|
|
|
|
network[id].threshold_epsilon_xy(
|
|
|
|
cfg.learning_parameters.learning_rate_threshold_eps_xy
|
|
|
|
)
|
2022-05-01 02:11:59 +02:00
|
|
|
if cfg.network_structure.eps_xy_mean[id] is True:
|
|
|
|
network[id].mean_epsilon_xy()
|
2022-04-30 02:07:09 +02:00
|
|
|
else:
|
|
|
|
network[id].epsilon_xy = torch.tensor(
|
|
|
|
eps_xy[id], dtype=torch.float64
|
|
|
|
)
|
|
|
|
|
2022-04-30 16:43:13 +02:00
|
|
|
if cfg.network_structure.w_trainable[id] is True:
|
|
|
|
# Save the new values
|
|
|
|
np.save(
|
|
|
|
cfg.weight_path
|
|
|
|
+ "/Weight_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy",
|
|
|
|
network[id].weights.detach().numpy(),
|
2022-04-30 02:07:09 +02:00
|
|
|
)
|
2022-04-30 16:43:13 +02:00
|
|
|
|
|
|
|
try:
|
|
|
|
tb.add_histogram(
|
|
|
|
"Weights " + str(id),
|
|
|
|
network[id].weights,
|
|
|
|
cfg.learning_step,
|
|
|
|
)
|
|
|
|
except ValueError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
if cfg.network_structure.eps_xy_trainable[id] is True:
|
|
|
|
np.save(
|
|
|
|
cfg.eps_xy_path
|
|
|
|
+ "/EpsXY_L"
|
|
|
|
+ str(id)
|
|
|
|
+ "_S"
|
|
|
|
+ str(cfg.learning_step)
|
|
|
|
+ ".npy",
|
2022-04-30 02:07:09 +02:00
|
|
|
network[id].epsilon_xy.detach().numpy(),
|
|
|
|
)
|
2022-04-30 16:43:13 +02:00
|
|
|
try:
|
|
|
|
tb.add_histogram(
|
|
|
|
"Epsilon XY " + str(id),
|
|
|
|
network[id].epsilon_xy.detach().numpy(),
|
|
|
|
cfg.learning_step,
|
|
|
|
)
|
|
|
|
except ValueError:
|
|
|
|
pass
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
# Let the torch learning rate scheduler update the
|
|
|
|
# learning rates of the optimiers
|
2022-04-30 13:40:51 +02:00
|
|
|
if cfg.learning_parameters.lr_scheduler_patience_w > 0:
|
|
|
|
lr_scheduler_wf.step(my_loss_for_batch)
|
|
|
|
if cfg.learning_parameters.lr_scheduler_patience_eps_xy > 0:
|
|
|
|
lr_scheduler_eps.step(my_loss_for_batch)
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
tb.add_scalar(
|
|
|
|
"Train Performance", 100.0 - performance, cfg.learning_step
|
|
|
|
)
|
|
|
|
tb.add_scalar("Train Loss", my_loss_for_batch, cfg.learning_step)
|
|
|
|
tb.add_scalar(
|
|
|
|
"Learning Rate Scale WF",
|
|
|
|
optimizer_wf.param_groups[-1]["lr"],
|
|
|
|
cfg.learning_step,
|
|
|
|
)
|
|
|
|
tb.add_scalar(
|
|
|
|
"Learning Rate Scale Eps XY ",
|
|
|
|
optimizer_eps.param_groups[-1]["lr"],
|
|
|
|
cfg.learning_step,
|
|
|
|
)
|
|
|
|
|
|
|
|
cfg.learning_step += 1
|
|
|
|
train_loss = np.zeros((1), dtype=np.float32)
|
|
|
|
train_correct = 0
|
|
|
|
train_all = 0
|
|
|
|
performance = 0
|
|
|
|
train_number_of_processed_pattern = 0
|
|
|
|
|
|
|
|
tb.flush()
|
|
|
|
|
|
|
|
test_correct = 0
|
|
|
|
test_all = 0
|
|
|
|
|
|
|
|
if last_test_performance < 0:
|
|
|
|
logging.info("")
|
|
|
|
else:
|
|
|
|
logging.info(
|
|
|
|
f"\t\t\tLast test performance: {last_test_performance/100.0:^6.2%}"
|
|
|
|
)
|
|
|
|
logging.info("")
|
|
|
|
|
|
|
|
###############################################
|
|
|
|
# Run a test data performance measurement #
|
|
|
|
###############################################
|
|
|
|
if (
|
|
|
|
(
|
|
|
|
(
|
|
|
|
(
|
|
|
|
cfg.learning_step
|
|
|
|
% cfg.learning_parameters.test_every_x_learning_steps
|
|
|
|
)
|
|
|
|
== 0
|
|
|
|
)
|
|
|
|
or (cfg.learning_step == cfg.learning_step_max)
|
|
|
|
)
|
|
|
|
and (cfg.learning_parameters.test_during_learning is True)
|
|
|
|
and (cfg.learning_step > 0)
|
|
|
|
):
|
|
|
|
logging.info("")
|
|
|
|
logging.info("Testing:")
|
|
|
|
|
|
|
|
for h_x, h_x_labels in my_loader_test:
|
|
|
|
time_0 = time.perf_counter()
|
|
|
|
|
|
|
|
h_h: torch.Tensor = network(
|
|
|
|
the_dataset_train.pattern_filter_test(h_x, cfg).type(
|
|
|
|
dtype=torch.float64
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
test_correct += (
|
|
|
|
(h_h.argmax(dim=1).squeeze() == h_x_labels)
|
|
|
|
.sum()
|
|
|
|
.numpy()
|
|
|
|
)
|
|
|
|
test_all += h_h.shape[0]
|
|
|
|
performance = 100.0 * test_correct / test_all
|
|
|
|
time_1 = time.perf_counter()
|
|
|
|
time_measure_a = time_1 - time_0
|
|
|
|
|
|
|
|
logging.info(
|
|
|
|
(
|
|
|
|
f"\t\t{test_all} of {test_complete}"
|
|
|
|
f" with {performance/100:^6.2%} \t Time used: {time_measure_a:^6.2f}sec"
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
logging.info("")
|
|
|
|
|
|
|
|
last_test_performance = performance
|
|
|
|
|
|
|
|
tb.add_scalar(
|
|
|
|
"Test Error", 100.0 - performance, cfg.learning_step
|
|
|
|
)
|
|
|
|
tb.flush()
|
|
|
|
|
|
|
|
if cfg.learning_step == cfg.learning_step_max:
|
|
|
|
tb.close()
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
# %%
|