pytorch-sbs/network/AutoNNMFLayer.py

504 lines
17 KiB
Python
Raw Normal View History

2023-07-26 12:42:54 +02:00
import torch
from network.calculate_output_size import calculate_output_size
class AutoNNMFLayer(torch.nn.Module):
_epsilon_0: float
_weights: torch.nn.parameter.Parameter
_weights_exists: bool = False
_kernel_size: list[int]
_stride: list[int]
_dilation: list[int]
_padding: list[int]
_output_size: torch.Tensor
_inbetween_size: torch.Tensor
_number_of_neurons: int
_number_of_input_neurons: int
_h_initial: torch.Tensor | None = None
_w_trainable: bool
_weight_noise_range: list[float]
_input_size: list[int]
_output_layer: bool = False
_number_of_iterations: int
_local_learning: bool = False
device: torch.device
default_dtype: torch.dtype
_number_of_grad_weight_contributions: float = 0.0
last_input_store: bool = False
last_input_data: torch.Tensor | None = None
_layer_id: int = -1
_skip_gradient_calculation: bool
_keep_last_grad_scale: bool
_disable_scale_grade: bool
_last_grad_scale: torch.nn.parameter.Parameter
def __init__(
self,
number_of_input_neurons: int,
number_of_neurons: int,
input_size: list[int],
forward_kernel_size: list[int],
number_of_iterations: int,
epsilon_0: float = 1.0,
weight_noise_range: list[float] = [0.0, 1.0],
strides: list[int] = [1, 1],
dilation: list[int] = [0, 0],
padding: list[int] = [0, 0],
w_trainable: bool = False,
device: torch.device | None = None,
default_dtype: torch.dtype | None = None,
layer_id: int = -1,
local_learning: bool = False,
output_layer: bool = False,
skip_gradient_calculation: bool = False,
keep_last_grad_scale: bool = False,
disable_scale_grade: bool = True,
) -> None:
super().__init__()
assert device is not None
assert default_dtype is not None
self.device = device
self.default_dtype = default_dtype
self._w_trainable = bool(w_trainable)
self._stride = strides
self._dilation = dilation
self._padding = padding
self._kernel_size = forward_kernel_size
self._number_of_input_neurons = int(number_of_input_neurons)
self._number_of_neurons = int(number_of_neurons)
self._epsilon_0 = float(epsilon_0)
self._number_of_iterations = int(number_of_iterations)
self._weight_noise_range = weight_noise_range
self._layer_id = layer_id
self._local_learning = local_learning
self._output_layer = output_layer
self._skip_gradient_calculation = skip_gradient_calculation
self._keep_last_grad_scale = bool(keep_last_grad_scale)
self._disable_scale_grade = bool(disable_scale_grade)
self._last_grad_scale = torch.nn.parameter.Parameter(
torch.tensor(-1.0, dtype=self.default_dtype),
requires_grad=True,
)
assert len(input_size) == 2
self._input_size = input_size
self._output_size = torch.tensor(input_size)
self._inbetween_size = calculate_output_size(
value=input_size,
kernel_size=self._kernel_size,
stride=self._stride,
dilation=self._dilation,
padding=self._padding,
)
self.set_h_init_to_uniform()
# ###############################################################
# Initialize the weights
# ###############################################################
assert len(self._weight_noise_range) == 2
weights = torch.empty(
(
int(self._kernel_size[0])
* int(self._kernel_size[1])
* int(self._number_of_input_neurons),
int(self._number_of_neurons),
),
dtype=self.default_dtype,
device=self.device,
)
torch.nn.init.uniform_(
weights,
a=float(self._weight_noise_range[0]),
b=float(self._weight_noise_range[1]),
)
self.weights = weights
self.functional_nnmf_sbs_bp = FunctionalAutoNNMF.apply
@property
def weights(self) -> torch.Tensor | None:
if self._weights_exists is False:
return None
else:
return self._weights
@weights.setter
def weights(self, value: torch.Tensor):
assert value is not None
assert torch.is_tensor(value) is True
assert value.dim() == 2
temp: torch.Tensor = (
value.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
)
temp /= temp.sum(dim=0, keepdim=True, dtype=self.default_dtype)
if self._weights_exists is False:
self._weights = torch.nn.parameter.Parameter(temp, requires_grad=True)
self._weights_exists = True
else:
self._weights.data = temp
@property
def h_initial(self) -> torch.Tensor | None:
return self._h_initial
@h_initial.setter
def h_initial(self, value: torch.Tensor):
assert value is not None
assert torch.is_tensor(value) is True
assert value.dim() == 1
assert value.dtype == self.default_dtype
self._h_initial = (
value.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
.requires_grad_(False)
)
def update_pre_care(self):
if self._weights.grad is not None:
assert self._number_of_grad_weight_contributions > 0
self._weights.grad /= self._number_of_grad_weight_contributions
self._number_of_grad_weight_contributions = 0.0
def update_after_care(self, threshold_weight: float):
if self._w_trainable is True:
self.norm_weights()
self.threshold_weights(threshold_weight)
self.norm_weights()
def after_batch(self, new_state: bool = False):
if self._keep_last_grad_scale is True:
self._last_grad_scale.data = self._last_grad_scale.grad # type: ignore
self._keep_last_grad_scale = new_state
self._last_grad_scale.grad = torch.zeros_like(self._last_grad_scale.grad) # type: ignore
def set_h_init_to_uniform(self) -> None:
assert self._number_of_neurons > 2
self.h_initial: torch.Tensor = torch.full(
(self._number_of_neurons,),
(1.0 / float(self._number_of_neurons)),
dtype=self.default_dtype,
device=self.device,
)
def norm_weights(self) -> None:
assert self._weights_exists is True
temp: torch.Tensor = (
self._weights.data.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
)
temp /= temp.sum(dim=0, keepdim=True, dtype=self.default_dtype)
self._weights.data = temp
def threshold_weights(self, threshold: float) -> None:
assert self._weights_exists is True
assert threshold >= 0
torch.clamp(
self._weights.data,
min=float(threshold),
max=None,
out=self._weights.data,
)
####################################################################
# Forward #
####################################################################
def forward(
self,
input: torch.Tensor,
) -> torch.Tensor:
# Are we happy with the input?
assert input is not None
assert torch.is_tensor(input) is True
assert input.dim() == 4
assert input.dtype == self.default_dtype
assert input.shape[1] == self._number_of_input_neurons
assert input.shape[2] == self._input_size[0]
assert input.shape[3] == self._input_size[1]
# Are we happy with the rest of the network?
assert self._epsilon_0 is not None
assert self._h_initial is not None
assert self._weights_exists is True
assert self._weights is not None
# Convolution of the input...
# Well, this is a convoltion layer
# there needs to be convolution somewhere
input_convolved = torch.nn.functional.fold(
torch.nn.functional.unfold(
input.requires_grad_(True),
kernel_size=(int(self._kernel_size[0]), int(self._kernel_size[1])),
dilation=(int(self._dilation[0]), int(self._dilation[1])),
padding=(int(self._padding[0]), int(self._padding[1])),
stride=(int(self._stride[0]), int(self._stride[1])),
),
output_size=tuple(self._inbetween_size.tolist()),
kernel_size=(1, 1),
dilation=(1, 1),
padding=(0, 0),
stride=(1, 1),
)
# We might need the convolved input for other layers
# let us keep it for the future
if self.last_input_store is True:
self.last_input_data = input_convolved.detach().clone()
self.last_input_data /= self.last_input_data.sum(dim=1, keepdim=True)
else:
self.last_input_data = None
input_convolved = input_convolved / (
input_convolved.sum(dim=1, keepdim=True) + 1e-20
)
parameter_list = torch.tensor(
[
int(self._inbetween_size[0]), # 0
int(self._inbetween_size[1]), # 1
int(self._number_of_iterations), # 2
int(self._w_trainable), # 3
int(self._skip_gradient_calculation), # 4
int(self._keep_last_grad_scale), # 5
int(self._disable_scale_grade), # 6
int(self._local_learning), # 7
int(self._output_layer), # 8
],
dtype=torch.int64,
)
epsilon_0 = torch.tensor(self._epsilon_0)
h = self.functional_nnmf_sbs_bp(
input_convolved,
epsilon_0,
self._weights,
self._h_initial,
parameter_list,
self._last_grad_scale,
)
self._number_of_grad_weight_contributions += (
h.shape[0] * h.shape[-2] * h.shape[-1]
)
# The decoding weight will not be optimized!!!
# (self._weights.detach().clone())
output_convolved = (
h.unsqueeze(1) * (self._weights.detach().clone()).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
).sum(dim=2)
output = torch.nn.functional.fold(
torch.nn.functional.unfold(
output_convolved,
kernel_size=(1, 1),
dilation=1,
padding=0,
stride=1,
),
output_size=(int(input.shape[-2]), int(input.shape[-1])),
kernel_size=(int(self._kernel_size[0]), int(self._kernel_size[1])),
dilation=(int(self._dilation[0]), int(self._dilation[1])),
padding=(int(self._padding[0]), int(self._padding[1])),
stride=(int(self._stride[0]), int(self._stride[1])),
)
return output
class FunctionalAutoNNMF(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
epsilon_0: torch.Tensor,
weights: torch.Tensor,
h_initial: torch.Tensor,
parameter_list: torch.Tensor,
grad_output_scale: torch.Tensor,
) -> torch.Tensor:
output_size_0: int = int(parameter_list[0])
output_size_1: int = int(parameter_list[1])
number_of_iterations: int = int(parameter_list[2])
_epsilon_0 = epsilon_0.item()
h = torch.tile(
h_initial.unsqueeze(0).unsqueeze(-1).unsqueeze(-1),
dims=[
int(input.shape[0]),
1,
int(output_size_0),
int(output_size_1),
],
)
for _ in range(0, number_of_iterations):
h_w = h.unsqueeze(1) * weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
h_w = h_w / (h_w.sum(dim=2, keepdim=True) + 1e-20)
h_w = (h_w * input.unsqueeze(2)).sum(dim=1)
if _epsilon_0 > 0:
h = h + _epsilon_0 * h_w
else:
h = h_w
h = h / (h.sum(dim=1, keepdim=True) + 1e-20)
ctx.save_for_backward(
input,
weights,
h,
parameter_list,
grad_output_scale,
)
return h
@staticmethod
def backward(ctx, grad_output):
# ##############################################
# Get the variables back
# ##############################################
(
input,
weights,
output,
parameter_list,
last_grad_scale,
) = ctx.saved_tensors
# ##############################################
# Default output
# ##############################################
grad_input = None
grad_epsilon_0 = None
grad_weights = None
grad_h_initial = None
grad_parameter_list = None
# ##############################################
# Parameters
# ##############################################
parameter_w_trainable: bool = bool(parameter_list[3])
parameter_skip_gradient_calculation: bool = bool(parameter_list[4])
parameter_keep_last_grad_scale: bool = bool(parameter_list[5])
parameter_disable_scale_grade: bool = bool(parameter_list[6])
parameter_local_learning: bool = bool(parameter_list[7])
parameter_output_layer: bool = bool(parameter_list[8])
# ##############################################
# Dealing with overall scale of the gradient
# ##############################################
if parameter_disable_scale_grade is False:
if parameter_keep_last_grad_scale is True:
last_grad_scale = torch.tensor(
[torch.abs(grad_output).max(), last_grad_scale]
).max()
grad_output /= last_grad_scale
grad_output_scale = last_grad_scale.clone()
input /= input.sum(dim=1, keepdim=True, dtype=weights.dtype) + 1e-20
# #################################################
# User doesn't want us to calculate the gradients
# #################################################
if parameter_skip_gradient_calculation is True:
return (
grad_input,
grad_epsilon_0,
grad_weights,
grad_h_initial,
grad_parameter_list,
grad_output_scale,
)
# #################################################
# Calculate backprop error (grad_input)
# #################################################
backprop_r: torch.Tensor = weights.unsqueeze(0).unsqueeze(-1).unsqueeze(
-1
) * output.unsqueeze(1)
backprop_bigr: torch.Tensor = backprop_r.sum(dim=2)
backprop_z: torch.Tensor = backprop_r * (
1.0 / (backprop_bigr + 1e-20)
).unsqueeze(2)
grad_input: torch.Tensor = (backprop_z * grad_output.unsqueeze(1)).sum(2)
del backprop_z
# #################################################
# Calculate weight gradient (grad_weights)
# #################################################
if parameter_w_trainable is False:
# #################################################
# We don't train this weight
# #################################################
grad_weights = None
elif (parameter_output_layer is False) and (parameter_local_learning is True):
# #################################################
# Local learning
# #################################################
grad_weights = (
(-2 * (input - backprop_bigr).unsqueeze(2) * output.unsqueeze(1))
.sum(0)
.sum(-1)
.sum(-1)
)
else:
# #################################################
# Backprop
# #################################################
backprop_f: torch.Tensor = output.unsqueeze(1) * (
input / (backprop_bigr**2 + 1e-20)
).unsqueeze(2)
result_omega: torch.Tensor = backprop_bigr.unsqueeze(
2
) * grad_output.unsqueeze(1)
result_omega -= (backprop_r * grad_output.unsqueeze(1)).sum(2).unsqueeze(2)
result_omega *= backprop_f
del backprop_f
grad_weights = result_omega.sum(0).sum(-1).sum(-1)
del result_omega
del backprop_bigr
del backprop_r
return (
grad_input,
grad_epsilon_0,
grad_weights,
grad_h_initial,
grad_parameter_list,
grad_output_scale,
)