2022-04-30 02:07:09 +02:00
|
|
|
# MIT License
|
|
|
|
# Copyright 2022 University of Bremen
|
|
|
|
#
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
# a copy of this software and associated documentation files (the "Software"),
|
|
|
|
# to deal in the Software without restriction, including without limitation
|
|
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
|
|
#
|
|
|
|
# The above copyright notice and this permission notice shall be included
|
|
|
|
# in all copies or substantial portions of the Software.
|
|
|
|
#
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
|
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
|
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
|
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
|
|
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# David Rotermund ( davrot@uni-bremen.de )
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Release history:
|
|
|
|
# ================
|
|
|
|
# 1.0.0 -- 01.05.2022: first release
|
|
|
|
#
|
|
|
|
#
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import torchvision as tv # type: ignore
|
|
|
|
from Parameter import Config
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetMaster(torch.utils.data.Dataset, ABC):
|
|
|
|
|
|
|
|
path_label: str
|
|
|
|
label_storage: np.ndarray
|
|
|
|
pattern_storage: np.ndarray
|
|
|
|
number_of_pattern: int
|
|
|
|
mean: list[float]
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if train is True:
|
|
|
|
self.label_storage = np.load(path_label + "/TrainLabelStorage.npy")
|
|
|
|
else:
|
|
|
|
self.label_storage = np.load(path_label + "/TestLabelStorage.npy")
|
|
|
|
|
|
|
|
if train is True:
|
|
|
|
self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy")
|
|
|
|
else:
|
|
|
|
self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy")
|
|
|
|
|
|
|
|
self.number_of_pattern = self.label_storage.shape[0]
|
|
|
|
|
|
|
|
self.mean = []
|
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return self.number_of_pattern
|
|
|
|
|
|
|
|
# Get one pattern at position index
|
|
|
|
@abstractmethod
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetMNIST(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, 0:1, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. on/off filteres
|
|
|
|
3. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
|
|
|
gray: torch.Tensor = my_on_off_filter(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. on/off filteres
|
|
|
|
3. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
|
|
|
gray: torch.Tensor = my_on_off_filter(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetFashionMNIST(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, 0:1, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. on/off filteres
|
|
|
|
3. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
|
|
|
gray: torch.Tensor = my_on_off_filter(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. on/off filteres
|
|
|
|
3. returned.
|
|
|
|
|
|
|
|
This is a 1 channel version (e.g. one gray channel).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 1
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
|
|
|
tv.transforms.ColorJitter(
|
|
|
|
brightness=cfg.augmentation.jitter_brightness,
|
|
|
|
contrast=cfg.augmentation.jitter_contrast,
|
|
|
|
saturation=cfg.augmentation.jitter_saturation,
|
|
|
|
hue=cfg.augmentation.jitter_hue,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
|
|
|
gray: torch.Tensor = my_on_off_filter(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
return gray
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetCIFAR(DatasetMaster):
|
|
|
|
"""Contstructor"""
|
|
|
|
|
|
|
|
# Initialize
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
train: bool = False,
|
|
|
|
path_pattern: str = "./",
|
|
|
|
path_label: str = "./",
|
|
|
|
) -> None:
|
|
|
|
super().__init__(train, path_pattern, path_label)
|
|
|
|
|
|
|
|
self.pattern_storage = np.ascontiguousarray(
|
|
|
|
np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1)
|
|
|
|
)
|
|
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
|
|
|
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
|
|
|
self.mean = [*mean]
|
|
|
|
|
|
|
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
|
|
|
|
|
|
|
image = self.pattern_storage[index, :, :, :]
|
|
|
|
target = int(self.label_storage[index])
|
|
|
|
return torch.tensor(image), target
|
|
|
|
|
|
|
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The test image comes in
|
|
|
|
1. is center cropped
|
|
|
|
2. on/off filteres
|
|
|
|
3. returned.
|
|
|
|
|
|
|
|
This is a 3 channel version (e.g. r,g,b channels).
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(cfg.image_statistics.mean) == 3
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter_r: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[0]
|
|
|
|
)
|
|
|
|
my_on_off_filter_g: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[1]
|
|
|
|
)
|
|
|
|
my_on_off_filter_b: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[2]
|
|
|
|
)
|
|
|
|
r: torch.Tensor = my_on_off_filter_r(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
g: torch.Tensor = my_on_off_filter_g(
|
|
|
|
pattern[:, 1:2, :, :],
|
|
|
|
)
|
|
|
|
b: torch.Tensor = my_on_off_filter_b(
|
|
|
|
pattern[:, 2:3, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
r = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
|
|
|
g = pattern[:, 1:2, :, :] + torch.finfo(torch.float32).eps
|
|
|
|
b = pattern[:, 2:3, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
|
|
|
return new_tensor
|
|
|
|
|
|
|
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
|
|
|
"""0. The training image comes in
|
|
|
|
1. is cropped from a random position
|
|
|
|
2. is randomly horizontally flipped
|
|
|
|
3. is randomly color jitteres
|
|
|
|
4. on/off filteres
|
|
|
|
5. returned.
|
|
|
|
|
|
|
|
This is a 3 channel version (e.g. r,g,b channels).
|
|
|
|
"""
|
|
|
|
assert len(cfg.image_statistics.mean) == 3
|
|
|
|
assert len(cfg.image_statistics.the_size) == 2
|
|
|
|
assert cfg.image_statistics.the_size[0] > 0
|
|
|
|
assert cfg.image_statistics.the_size[1] > 0
|
|
|
|
|
|
|
|
# Transformation chain
|
|
|
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
|
|
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
|
|
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
|
|
|
tv.transforms.ColorJitter(
|
|
|
|
brightness=cfg.augmentation.jitter_brightness,
|
|
|
|
contrast=cfg.augmentation.jitter_contrast,
|
|
|
|
saturation=cfg.augmentation.jitter_saturation,
|
|
|
|
hue=cfg.augmentation.jitter_hue,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
scripted_transforms = torch.jit.script(my_transforms)
|
|
|
|
|
|
|
|
# Preprocess the input data
|
|
|
|
pattern = scripted_transforms(pattern)
|
|
|
|
|
|
|
|
# => On/Off
|
2022-05-01 17:03:19 +02:00
|
|
|
if cfg.augmentation.use_on_off_filter is True:
|
|
|
|
my_on_off_filter_r: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[0]
|
|
|
|
)
|
|
|
|
my_on_off_filter_g: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[1]
|
|
|
|
)
|
|
|
|
my_on_off_filter_b: OnOffFilter = OnOffFilter(
|
|
|
|
p=cfg.image_statistics.mean[2]
|
|
|
|
)
|
|
|
|
r: torch.Tensor = my_on_off_filter_r(
|
|
|
|
pattern[:, 0:1, :, :],
|
|
|
|
)
|
|
|
|
g: torch.Tensor = my_on_off_filter_g(
|
|
|
|
pattern[:, 1:2, :, :],
|
|
|
|
)
|
|
|
|
b: torch.Tensor = my_on_off_filter_b(
|
|
|
|
pattern[:, 2:3, :, :],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
r = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps
|
|
|
|
g = pattern[:, 1:2, :, :] + torch.finfo(torch.float32).eps
|
|
|
|
b = pattern[:, 2:3, :, :] + torch.finfo(torch.float32).eps
|
2022-04-30 02:07:09 +02:00
|
|
|
|
|
|
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
|
|
|
return new_tensor
|
|
|
|
|
|
|
|
|
|
|
|
class OnOffFilter(torch.nn.Module):
|
|
|
|
def __init__(self, p: float = 0.5) -> None:
|
|
|
|
super(OnOffFilter, self).__init__()
|
|
|
|
self.p: float = p
|
|
|
|
|
|
|
|
def forward(self, tensor: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
assert tensor.shape[1] == 1
|
|
|
|
|
|
|
|
tensor_clone = 2.0 * (tensor - self.p)
|
|
|
|
|
|
|
|
temp_0: torch.Tensor = torch.where(
|
|
|
|
tensor_clone < 0.0,
|
|
|
|
-tensor_clone,
|
|
|
|
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
|
|
|
|
)
|
|
|
|
|
|
|
|
temp_1: torch.Tensor = torch.where(
|
|
|
|
tensor_clone >= 0.0,
|
|
|
|
tensor_clone,
|
|
|
|
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
|
|
|
|
)
|
|
|
|
|
|
|
|
new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1)
|
|
|
|
|
|
|
|
return new_tensor
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
return self.__class__.__name__ + "(p={0})".format(self.p)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
pass
|