2023-01-15 14:56:50 +01:00
|
|
|
# %%
|
|
|
|
import os
|
|
|
|
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
|
|
|
|
import sys
|
2023-02-04 14:22:45 +01:00
|
|
|
|
|
|
|
if len(sys.argv) < 2:
|
|
|
|
order_id: float | int | None = None
|
|
|
|
else:
|
|
|
|
order_id = float(sys.argv[1])
|
|
|
|
|
2023-01-15 14:56:50 +01:00
|
|
|
import torch
|
|
|
|
import dataconf
|
|
|
|
import logging
|
|
|
|
from datetime import datetime
|
2023-02-04 14:22:45 +01:00
|
|
|
import math
|
2023-01-15 14:56:50 +01:00
|
|
|
|
|
|
|
from network.Parameter import Config
|
|
|
|
|
|
|
|
from network.build_network import build_network
|
|
|
|
from network.build_optimizer import build_optimizer
|
|
|
|
from network.build_lr_scheduler import build_lr_scheduler
|
|
|
|
from network.build_datasets import build_datasets
|
|
|
|
from network.load_previous_weights import load_previous_weights
|
|
|
|
|
|
|
|
from network.loop_train_test import (
|
|
|
|
loop_test,
|
|
|
|
loop_train,
|
|
|
|
run_lr_scheduler,
|
|
|
|
loop_test_reconstruction,
|
|
|
|
)
|
|
|
|
from network.SbSReconstruction import SbSReconstruction
|
2023-02-04 14:22:45 +01:00
|
|
|
from network.InputSpikeImage import InputSpikeImage
|
2023-01-15 14:56:50 +01:00
|
|
|
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
|
2023-02-04 14:22:45 +01:00
|
|
|
if order_id is None:
|
|
|
|
order_id_string: str = ""
|
|
|
|
else:
|
|
|
|
order_id_string = f"_{order_id}"
|
|
|
|
|
2023-01-15 14:56:50 +01:00
|
|
|
# ######################################################################
|
|
|
|
# We want to log what is going on into a file and screen
|
|
|
|
# ######################################################################
|
|
|
|
|
|
|
|
now = datetime.now()
|
|
|
|
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
|
|
|
|
logging.basicConfig(
|
2023-02-04 14:22:45 +01:00
|
|
|
filename=f"log_{dt_string_filename}{order_id_string}.txt",
|
2023-01-15 14:56:50 +01:00
|
|
|
filemode="w",
|
|
|
|
level=logging.INFO,
|
|
|
|
format="%(asctime)s %(message)s",
|
|
|
|
)
|
|
|
|
logging.getLogger().addHandler(logging.StreamHandler())
|
|
|
|
|
|
|
|
# ######################################################################
|
|
|
|
# Load the config data from the json file
|
|
|
|
# ######################################################################
|
|
|
|
|
|
|
|
|
|
|
|
if os.path.exists("def.json") is False:
|
|
|
|
raise Exception("Config file not found! def.json")
|
|
|
|
|
|
|
|
if os.path.exists("network.json") is False:
|
|
|
|
raise Exception("Config file not found! network.json")
|
|
|
|
|
|
|
|
if os.path.exists("dataset.json") is False:
|
|
|
|
raise Exception("Config file not found! dataset.json")
|
|
|
|
|
|
|
|
|
2023-02-04 14:22:45 +01:00
|
|
|
cfg = (
|
|
|
|
dataconf.multi.file("network.json").file("dataset.json").file("def.json").on(Config)
|
|
|
|
)
|
2023-01-15 14:56:50 +01:00
|
|
|
logging.info(cfg)
|
|
|
|
|
|
|
|
logging.info(f"Number of spikes: {cfg.number_of_spikes}")
|
|
|
|
logging.info(f"Cooldown after spikes: {cfg.cooldown_after_number_of_spikes}")
|
|
|
|
logging.info(f"Reduction cooldown: {cfg.reduction_cooldown}")
|
|
|
|
logging.info("")
|
|
|
|
logging.info(f"Epsilon 0: {cfg.epsilon_0}")
|
|
|
|
logging.info(f"Batch size: {cfg.batch_size}")
|
|
|
|
logging.info(f"Data mode: {cfg.data_mode}")
|
|
|
|
logging.info("")
|
|
|
|
logging.info("*** Config loaded.")
|
|
|
|
logging.info("")
|
|
|
|
|
2023-02-04 14:22:45 +01:00
|
|
|
tb = SummaryWriter(log_dir=f"{cfg.log_path}{order_id_string}")
|
2023-01-15 14:56:50 +01:00
|
|
|
|
|
|
|
# ###########################################
|
|
|
|
# GPU Yes / NO ?
|
|
|
|
# ###########################################
|
|
|
|
default_dtype = torch.float32
|
|
|
|
torch.set_default_dtype(default_dtype)
|
|
|
|
torch_device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
use_gpu: bool = True if torch.cuda.is_available() else False
|
|
|
|
logging.info(f"Using {torch_device} device")
|
|
|
|
device = torch.device(torch_device)
|
|
|
|
|
|
|
|
# ######################################################################
|
|
|
|
# Prepare the test and training data
|
|
|
|
# ######################################################################
|
|
|
|
|
|
|
|
the_dataset_train, the_dataset_test, my_loader_test, my_loader_train = build_datasets(
|
|
|
|
cfg
|
|
|
|
)
|
|
|
|
|
|
|
|
logging.info("*** Data loaded.")
|
|
|
|
|
|
|
|
# ######################################################################
|
|
|
|
# Build the network, Optimizer, and LR Scheduler #
|
|
|
|
# ######################################################################
|
|
|
|
|
|
|
|
network = build_network(
|
|
|
|
cfg=cfg, device=device, default_dtype=default_dtype, logging=logging
|
|
|
|
)
|
|
|
|
logging.info("")
|
|
|
|
|
|
|
|
optimizer = build_optimizer(network=network, cfg=cfg, logging=logging)
|
|
|
|
|
|
|
|
lr_scheduler = build_lr_scheduler(optimizer=optimizer, cfg=cfg, logging=logging)
|
|
|
|
|
|
|
|
logging.info("*** Network generated.")
|
|
|
|
|
|
|
|
load_previous_weights(
|
|
|
|
network=network,
|
|
|
|
overload_path=cfg.learning_parameters.overload_path,
|
|
|
|
logging=logging,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
2023-02-04 14:22:45 +01:00
|
|
|
order_id=order_id,
|
2023-01-15 14:56:50 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
logging.info("")
|
|
|
|
|
2023-02-04 14:22:45 +01:00
|
|
|
# Fiddling around with the amount of spikes in the input layer
|
|
|
|
if order_id is not None:
|
|
|
|
|
|
|
|
image_size_x = (
|
|
|
|
the_dataset_train.initial_size[0] - 2 * cfg.augmentation.crop_width_in_pixel
|
|
|
|
)
|
|
|
|
image_size_y = (
|
|
|
|
the_dataset_train.initial_size[1] - 2 * cfg.augmentation.crop_width_in_pixel
|
|
|
|
)
|
|
|
|
number_of_spikes_in_input_layer = int(
|
|
|
|
math.ceil(
|
|
|
|
order_id * the_dataset_train.channel_size * image_size_x * image_size_y
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
assert len(cfg.number_of_spikes) > 0
|
|
|
|
cfg.number_of_spikes[0] = number_of_spikes_in_input_layer
|
|
|
|
|
|
|
|
if isinstance(network[0], InputSpikeImage) is True:
|
|
|
|
network[0].number_of_spikes = number_of_spikes_in_input_layer
|
|
|
|
|
|
|
|
|
2023-01-15 14:56:50 +01:00
|
|
|
last_test_performance: float = -1.0
|
|
|
|
with torch.no_grad():
|
|
|
|
if cfg.learning_parameters.learning_active is True:
|
|
|
|
while cfg.epoch_id < cfg.epoch_id_max:
|
|
|
|
|
|
|
|
# ##############################################
|
|
|
|
# Run a training data epoch
|
|
|
|
# ##############################################
|
|
|
|
network.train()
|
|
|
|
(
|
|
|
|
my_loss_for_batch,
|
|
|
|
performance_for_batch,
|
|
|
|
full_loss,
|
|
|
|
full_correct,
|
|
|
|
) = loop_train(
|
|
|
|
cfg=cfg,
|
|
|
|
network=network,
|
|
|
|
my_loader_train=my_loader_train,
|
|
|
|
the_dataset_train=the_dataset_train,
|
|
|
|
optimizer=optimizer,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
|
|
|
logging=logging,
|
|
|
|
tb=tb,
|
|
|
|
adapt_learning_rate=cfg.learning_parameters.adapt_learning_rate_after_minibatch,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
last_test_performance=last_test_performance,
|
2023-02-04 14:22:45 +01:00
|
|
|
order_id=order_id,
|
2023-01-15 14:56:50 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Let the torch learning rate scheduler update the
|
|
|
|
# learning rates of the optimiers
|
|
|
|
if cfg.learning_parameters.adapt_learning_rate_after_minibatch is False:
|
|
|
|
run_lr_scheduler(
|
|
|
|
cfg=cfg,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
optimizer=optimizer,
|
|
|
|
performance_for_batch=performance_for_batch,
|
|
|
|
my_loss_for_batch=my_loss_for_batch,
|
|
|
|
tb=tb,
|
|
|
|
logging=logging,
|
|
|
|
)
|
|
|
|
|
|
|
|
# ##############################################
|
|
|
|
# Run test data
|
|
|
|
# ##############################################
|
|
|
|
network.eval()
|
|
|
|
if isinstance(network[-1], SbSReconstruction) is False:
|
|
|
|
|
|
|
|
last_test_performance = loop_test(
|
|
|
|
epoch_id=cfg.epoch_id,
|
|
|
|
cfg=cfg,
|
|
|
|
network=network,
|
|
|
|
my_loader_test=my_loader_test,
|
|
|
|
the_dataset_test=the_dataset_test,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
|
|
|
logging=logging,
|
|
|
|
tb=tb,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
last_test_performance = loop_test_reconstruction(
|
|
|
|
epoch_id=cfg.epoch_id,
|
|
|
|
cfg=cfg,
|
|
|
|
network=network,
|
|
|
|
my_loader_test=my_loader_test,
|
|
|
|
the_dataset_test=the_dataset_test,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
|
|
|
logging=logging,
|
|
|
|
tb=tb,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Next epoch
|
|
|
|
cfg.epoch_id += 1
|
|
|
|
else:
|
|
|
|
# ##############################################
|
|
|
|
# Run test data
|
|
|
|
# ##############################################
|
|
|
|
network.eval()
|
|
|
|
if isinstance(network[-1], SbSReconstruction) is False:
|
|
|
|
last_test_performance = loop_test(
|
|
|
|
epoch_id=cfg.epoch_id,
|
|
|
|
cfg=cfg,
|
|
|
|
network=network,
|
|
|
|
my_loader_test=my_loader_test,
|
|
|
|
the_dataset_test=the_dataset_test,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
|
|
|
logging=logging,
|
|
|
|
tb=tb,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
last_test_performance = loop_test_reconstruction(
|
|
|
|
epoch_id=cfg.epoch_id,
|
|
|
|
cfg=cfg,
|
|
|
|
network=network,
|
|
|
|
my_loader_test=my_loader_test,
|
|
|
|
the_dataset_test=the_dataset_test,
|
|
|
|
device=device,
|
|
|
|
default_dtype=default_dtype,
|
|
|
|
logging=logging,
|
|
|
|
tb=tb,
|
|
|
|
)
|
|
|
|
|
|
|
|
tb.close()
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|