pytorch-sbs/README.md

68 lines
2.4 KiB
Markdown
Raw Normal View History

2022-04-30 02:03:34 +02:00
# pytorch-sbs
SbS Extension for PyTorch
2022-04-30 02:14:02 +02:00
2022-04-30 13:45:04 +02:00
# Based on these scientific papers
2022-04-30 02:14:02 +02:00
2022-04-30 02:16:43 +02:00
**Back-Propagation Learning in Deep Spike-By-Spike Networks**
David Rotermund and Klaus R. Pawelzik
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full
2022-04-30 02:14:24 +02:00
2022-04-30 02:16:43 +02:00
**Efficient Computation Based on Stochastic Spikes**
Udo Ernst, David Rotermund, and Klaus Pawelzik
2022-04-30 02:17:18 +02:00
Neural Computation (2007) 19 (5): 13131343. https://doi.org/10.1162/neco.2007.19.5.1313
2022-04-30 02:16:43 +02:00
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes
2022-04-30 13:45:04 +02:00
# Python
It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions.
# C++
You need to modify the Makefile in the C++ directory to your Python installation.
2023-01-05 13:32:32 +01:00
2023-01-05 13:29:12 +01:00
In addition your Python installation needs the PyBind11 package installed. You might want to perform a
2022-04-30 13:45:04 +02:00
pip install pybind11
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile.
2023-01-05 13:29:12 +01:00
For CUDA I used version 12.0.
2023-01-15 16:13:55 +01:00
2023-01-15 16:14:26 +01:00
# Config files and pre-existing weights
2023-01-15 16:13:55 +01:00
Three .json config files are required:
dataset.json : Information about the dataset
network.json : Describes the network architecture
def.json : Controlls the other parameters
If you want to load existing weights, just put them in a sub-folder called Previous
2023-03-15 14:02:21 +01:00
# Other relevant scientific papers
## NNMF
2023-03-15 14:03:32 +01:00
**Learning the parts of objects by non-negative matrix factorization**
Lee, Daniel D., and H. Sebastian Seung. Nature 401.6755 (1999): 788-791.
https://doi.org/10.1038/44565
2023-03-15 14:02:21 +01:00
2023-03-15 14:03:32 +01:00
**Algorithms for non-negative matrix factorization.**
Lee, Daniel, and H. Sebastian Seung. Advances in neural information processing systems 13 (2000).
2023-03-15 14:09:01 +01:00
https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
2023-03-15 14:06:26 +01:00
## SbS
**Massively Parallel FPGA Hardware for Spike-By-Spike Networks**
David Rotermund, Klaus R. Pawelzik
https://doi.org/10.1101/500280
**Biologically plausible learning in a deep recurrent spiking network**
2023-03-15 14:08:17 +01:00
David Rotermund, Klaus R. Pawelzik
2023-03-15 14:06:26 +01:00
https://doi.org/10.1101/613471
2023-03-15 14:08:17 +01:00
**Accelerating Spike-by-Spike Neural Networks on FPGA With Hybrid Custom Floating-Point and Logarithmic Dot-Product Approximation**
Yarib Nevarez, David Rotermund, Klaus R. Pawelzik, Alberto Garcia-Ortiz
https://doi.org/10.1109/access.2021.3085216
2023-03-15 14:06:26 +01:00