pytorch-sbs/get_perf.py

48 lines
1.1 KiB
Python
Raw Normal View History

2023-01-05 13:23:58 +01:00
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
2023-02-06 09:56:18 +01:00
which_scalar = "Test Error"
2023-01-05 13:23:58 +01:00
from tensorboard.backend.event_processing import event_accumulator
import numpy as np
import glob
2023-02-06 09:56:18 +01:00
log_paths: str = "Log*"
log_paths_list = glob.glob(log_paths)
assert len(log_paths_list) > 0
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
for path in log_paths_list:
print(path)
temp = path.split("_")
if len(temp) == 2:
parameter:str | None = temp[-1]
else:
parameter = None
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
# ----------------------
temp = glob.glob(path)
assert len(temp) == 1
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
acc = event_accumulator.EventAccumulator(path)
acc.Reload()
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
# Check if the requested scalar exists
available_scalar = acc.Tags()["scalars"]
# available_histograms = acc.Tags()["histograms"]
available_scalar.index(which_scalar)
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
te = acc.Scalars(which_scalar)
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
np_temp = np.zeros((len(te), 2))
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
for id in range(0, len(te)):
np_temp[id, 0] = te[id][1]
np_temp[id, 1] = te[id][2]
print(np_temp)
2023-01-05 13:23:58 +01:00
2023-02-06 09:56:18 +01:00
if parameter is not None:
np.save(f"result_{parameter}.npy", np_temp)
else:
np.save(f"result.npy", np_temp)
2023-01-05 13:23:58 +01:00