127 lines
4.3 KiB
Python
127 lines
4.3 KiB
Python
|
# MIT License
|
||
|
# Copyright 2022 University of Bremen
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining
|
||
|
# a copy of this software and associated documentation files (the "Software"),
|
||
|
# to deal in the Software without restriction, including without limitation
|
||
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
# and/or sell copies of the Software, and to permit persons to whom the
|
||
|
# Software is furnished to do so, subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included
|
||
|
# in all copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
||
|
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
#
|
||
|
#
|
||
|
# David Rotermund ( davrot@uni-bremen.de )
|
||
|
#
|
||
|
#
|
||
|
# Release history:
|
||
|
# ================
|
||
|
# 1.0.0 -- 01.05.2022: first release
|
||
|
#
|
||
|
#
|
||
|
|
||
|
import numpy as np
|
||
|
import pickle
|
||
|
|
||
|
|
||
|
def give_filenames(id: int) -> tuple[str, str, int]:
|
||
|
if id == 0:
|
||
|
start_id: int = 0
|
||
|
prefix: str = "Test"
|
||
|
filename: str = "cifar-10-batches-py/test_batch"
|
||
|
if id == 1:
|
||
|
start_id = 0
|
||
|
prefix = "Train"
|
||
|
filename = "cifar-10-batches-py/data_batch_1"
|
||
|
if id == 2:
|
||
|
start_id = 10000
|
||
|
prefix = "Train"
|
||
|
filename = "cifar-10-batches-py/data_batch_2"
|
||
|
if id == 3:
|
||
|
start_id = 20000
|
||
|
prefix = "Train"
|
||
|
filename = "cifar-10-batches-py/data_batch_3"
|
||
|
if id == 4:
|
||
|
start_id = 30000
|
||
|
prefix = "Train"
|
||
|
filename = "cifar-10-batches-py/data_batch_4"
|
||
|
if id == 5:
|
||
|
start_id = 40000
|
||
|
prefix = "Train"
|
||
|
filename = "cifar-10-batches-py/data_batch_5"
|
||
|
return filename, prefix, start_id
|
||
|
|
||
|
|
||
|
def load_data(filename: str) -> tuple[np.ndarray, np.ndarray]:
|
||
|
fo = open(filename, "rb")
|
||
|
dict_data = pickle.load(fo, encoding="bytes")
|
||
|
_, labels_temp, data_temp, _ = dict_data.items()
|
||
|
data: np.ndarray = np.array(data_temp[1])
|
||
|
labels: np.ndarray = np.array(labels_temp[1])
|
||
|
return data, labels
|
||
|
|
||
|
|
||
|
def split_into_three_color_channels(
|
||
|
image: np.ndarray,
|
||
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||
|
channel_r = image[0:1024].astype(np.float32)
|
||
|
channel_r = channel_r.reshape(32, 32)
|
||
|
channel_g = image[1024:2048].astype(np.float32)
|
||
|
channel_g = channel_g.reshape(32, 32)
|
||
|
channel_b = image[2048:3072].astype(np.float32)
|
||
|
channel_b = channel_b.reshape(32, 32)
|
||
|
return channel_r, channel_g, channel_b
|
||
|
|
||
|
|
||
|
def process_data_set(test_data_mode: bool) -> None:
|
||
|
|
||
|
if test_data_mode is True:
|
||
|
filename_out_pattern: str = "TestPatternStorage.npy"
|
||
|
filename_out_label: str = "TestLabelStorage.npy"
|
||
|
number_of_pictures: int = 10000
|
||
|
start_id: int = 0
|
||
|
end_id: int = 0
|
||
|
else:
|
||
|
filename_out_pattern = "TrainPatternStorage.npy"
|
||
|
filename_out_label = "TrainLabelStorage.npy"
|
||
|
number_of_pictures = 50000
|
||
|
start_id = 1
|
||
|
end_id = 5
|
||
|
|
||
|
np_data: np.ndarray = np.zeros((number_of_pictures, 32, 32, 3), dtype=np.float32)
|
||
|
np_label: np.ndarray = np.zeros((number_of_pictures), dtype=np.uint64)
|
||
|
|
||
|
for id in range(start_id, end_id + 1):
|
||
|
filename, _, start_id_pattern = give_filenames(id)
|
||
|
pictures, labels = load_data(filename)
|
||
|
|
||
|
for i in range(0, pictures.shape[0]):
|
||
|
channel_r, channel_g, channel_b = split_into_three_color_channels(
|
||
|
pictures[i, :]
|
||
|
)
|
||
|
np_data[i + start_id_pattern, :, :, 0] = channel_r
|
||
|
np_data[i + start_id_pattern, :, :, 1] = channel_g
|
||
|
np_data[i + start_id_pattern, :, :, 2] = channel_b
|
||
|
np_label[i + start_id_pattern] = labels[i]
|
||
|
|
||
|
np_data /= np.max(np_data)
|
||
|
|
||
|
label_storage: np.ndarray = np_label.astype(dtype=np.uint64)
|
||
|
pattern_storage: np.ndarray = np_data.astype(dtype=np.float32)
|
||
|
|
||
|
np.save(filename_out_pattern, pattern_storage)
|
||
|
np.save(filename_out_label, label_storage)
|
||
|
|
||
|
|
||
|
process_data_set(True)
|
||
|
process_data_set(False)
|