Add files via upload

This commit is contained in:
David Rotermund 2023-01-13 21:33:57 +01:00 committed by GitHub
parent 6d6b757ed6
commit 09c8b10f23
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
56 changed files with 5062 additions and 0 deletions

View file

@ -0,0 +1,967 @@
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <iostream>
#include "HDynamicCNNManyIP.h"
#include "approximation_multiplication_function.h"
#include "kernel_approximation_multiplication.h"
#include "kernel_phxy_fill_with_h.h"
#include "kernel_phxy_fill_with_spike_selected_w.h"
#include "kernel_phxy_one_over_sum_into_pxy.h"
#include "kernel_phxy_plus_phxy.h"
#include "kernel_phxy_plus_pxy.h"
#include "kernel_phxy_times_phxy_equals_phxy.h"
#include "kernel_phxy_times_pxy.h"
#include "kernel_pxy_plus_v.h"
#include "kernel_pxy_reciprocal.h"
#include "kernel_pxy_set_to_v.h"
#include "kernel_pxy_time_pxy.h"
#include "kernel_pxy_times_spike_selected_sxy.h"
#include "kernel_pxy_times_v.h"
HDynamicCNNManyIP::HDynamicCNNManyIP(){
};
HDynamicCNNManyIP::~HDynamicCNNManyIP(){
};
bool HDynamicCNNManyIP::update_entrypoint(
int64_t h_pointer_addr, int64_t h_dim_0, int64_t h_dim_1, int64_t h_dim_2,
int64_t h_dim_3, int64_t epsilon_xy_pointer_addr, int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1, int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr, int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr, int64_t weights_dim_0, int64_t weights_dim_1,
int64_t input_pointer_addr, int64_t input_dim_0, int64_t input_dim_1,
int64_t input_dim_2, int64_t input_dim_3, int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0, int64_t number_of_processes,
float forgetting_offset, int64_t gpu_tuning_factor
// ,bool approximation_multiplication_enable, uint64_t
// number_of_frac_bits, bool approximation_enable,
// uint64_t number_of_trunc_bits
) {
bool approximation_multiplication_enable = false;
uint64_t number_of_frac_bits = 1;
bool approximation_enable = false;
uint64_t number_of_trunc_bits = false;
uint32_t ap_mask = static_cast<uint64_t>(pow(2, number_of_trunc_bits)) - 1;
size_t number_of_pattern = input_dim_0;
size_t h_dim = init_vector_dim_0;
float* h_init_ptr = (float*)init_vector_pointer_addr;
assert((h_init_ptr != nullptr));
assert((h_dim > 0));
float* h_pointer = (float*)h_pointer_addr;
assert((h_pointer != nullptr));
assert((h_dim_0 > 0));
assert((h_dim_1 > 0));
assert((h_dim_2 > 0));
assert((h_dim_3 > 0));
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
size_t h_dim_c1 = h_dim_2 * h_dim_3;
size_t h_dim_c2 = h_dim_3;
float* epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
assert((epsilon_xy_pointer != nullptr));
assert((epsilon_xy_dim_0 > 0));
assert((epsilon_xy_dim_1 > 0));
size_t epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
size_t epsilon_xy_dim_c1 = epsilon_xy_dim_2;
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
assert((epsilon_t_pointer != nullptr));
assert((epsilon_t_dim_0 > 0));
float* weights_pointer = (float*)weights_pointer_addr;
assert((weights_pointer != nullptr));
assert((weights_dim_0 > 0));
assert((weights_dim_1 > 0));
size_t weights_dim_c0 = weights_dim_1;
int64_t* input_pointer = (int64_t*)input_pointer_addr;
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
assert((h_dim == weights_dim_1));
size_t number_of_spikes = input_dim_1;
size_t dim_x = input_dim_2;
size_t dim_y = input_dim_3;
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
// --------------------
if (number_of_processes > 0) {
omp_set_num_threads(number_of_processes);
size_t pattern_id;
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
update(h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
epsilon_xy_pointer, epsilon_xy_dim_c0, epsilon_xy_dim_c1,
epsilon_t_pointer, weights_pointer, weights_dim_c0, input_pointer,
input_dim_c0, input_dim_c1, input_dim_c2, number_of_spikes, dim_x,
dim_y, forgetting_offset, forgetting_offset_local, pattern_id,
approximation_multiplication_enable, number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask);
}
} else {
gpu_update(h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
epsilon_xy_pointer, epsilon_xy_dim_c0, epsilon_xy_dim_c1,
epsilon_t_pointer, weights_pointer, weights_dim_c0,
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
number_of_spikes, dim_x, dim_y, forgetting_offset,
forgetting_offset_local, number_of_pattern, gpu_tuning_factor,
approximation_multiplication_enable, number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask);
}
return true;
};
bool HDynamicCNNManyIP::update(
float* h_init_ptr, float* h_pointer, size_t h_dim_c0, size_t h_dim_c1,
size_t h_dim_c2, size_t h_dim, float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0, size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer, float* weights_pointer, size_t weights_dim_c0,
int64_t* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, size_t number_of_spikes, size_t dim_x, size_t dim_y,
float forgetting_offset, float forgetting_offset_local, size_t pattern_id,
bool approximation_multiplication_enable, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits,
uint32_t ap_mask) {
float* h_ptr;
float* epsilon_xy_ptr;
int64_t* input_ptr;
size_t counter_x;
size_t counter_y;
for (counter_x = 0; counter_x < dim_x; counter_x++) {
for (counter_y = 0; counter_y < dim_y; counter_y++) {
epsilon_xy_ptr =
epsilon_xy_pointer + counter_x * epsilon_xy_dim_c1 + counter_y;
h_ptr =
h_pointer + pattern_id * h_dim_c0 + counter_x * h_dim_c2 + counter_y;
input_ptr = input_pointer + pattern_id * input_dim_c0 +
counter_x * input_dim_c2 + counter_y;
if (approximation_multiplication_enable == false) {
update_one_ip(h_init_ptr, h_ptr, h_dim_c1, h_dim, weights_pointer,
weights_dim_c0, input_ptr, input_dim_c1, epsilon_xy_ptr,
epsilon_xy_dim_c0, epsilon_t_pointer, number_of_spikes,
forgetting_offset, forgetting_offset_local);
} else {
update_one_ip_approx(
h_init_ptr, h_ptr, h_dim_c1, h_dim, weights_pointer, weights_dim_c0,
input_ptr, input_dim_c1, epsilon_xy_ptr, epsilon_xy_dim_c0,
epsilon_t_pointer, number_of_spikes, forgetting_offset,
forgetting_offset_local, approximation_multiplication_enable,
number_of_frac_bits, approximation_enable, number_of_trunc_bits,
ap_mask);
}
}
}
return true;
};
void HDynamicCNNManyIP::update_one_ip_approx(
float* h_init_ptr, float* h_pointer, size_t h_dim_c1, size_t h_dim,
float* weights_pointer, size_t weights_dim_c0, int64_t* input_pointer,
size_t input_dim_c1, float* epsilon_xy_pointer, size_t epsilon_xy_dim_c0,
float* epsilon_t_pointer, size_t number_of_spikes, float forgetting_offset,
float forgetting_offset_local, bool approximation_multiplication_enable,
uint64_t number_of_frac_bits, bool approximation_enable,
uint64_t number_of_trunc_bits, uint32_t ap_mask) {
float* h_temp = new float[h_dim];
float* h_subsegment = new float[h_dim];
memcpy(h_subsegment, h_init_ptr, sizeof(float) * h_dim);
size_t counter_spike;
size_t counter;
float h_temp_sum;
float temp_value;
float epsilon_subsegment;
float epsilon_scale = 1.0;
int64_t* spike;
float* w_ptr;
// ---------------
// Approx...
uint64_t pattern_size = h_dim;
std::vector<float> ap_h_vector;
ap_h_vector.resize(pattern_size);
float* ap_h_ptr = ap_h_vector.data();
std::vector<uint32_t> ap_x_vector;
ap_x_vector.resize(pattern_size);
uint32_t* ap_x_ptr = ap_x_vector.data();
std::vector<uint32_t> ap_y_vector;
ap_y_vector.resize(pattern_size);
uint32_t* ap_y_ptr = ap_y_vector.data();
std::vector<uint32_t> ap_x_exponent_vector;
ap_x_exponent_vector.resize(pattern_size);
uint32_t* ap_x_exponent_ptr = ap_x_exponent_vector.data();
std::vector<uint32_t> ap_y_exponent_vector;
ap_y_exponent_vector.resize(pattern_size);
uint32_t* ap_y_exponent_ptr = ap_y_exponent_vector.data();
std::vector<uint32_t> ap_h_exponent_vector;
ap_h_exponent_vector.resize(pattern_size);
uint32_t* ap_h_exponent_ptr = ap_h_exponent_vector.data();
std::vector<uint64_t> ap_res_vector;
ap_res_vector.resize(pattern_size);
uint64_t* ap_res_ptr = ap_res_vector.data();
std::vector<uint32_t> sign_temp_vector;
sign_temp_vector.resize(pattern_size);
uint32_t* sign_temp_ptr = sign_temp_vector.data();
// --------------
for (counter_spike = 0; counter_spike < number_of_spikes; counter_spike++) {
if (epsilon_scale > 1E10) {
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] *= temp_value;
}
epsilon_scale = 1.0;
}
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0) {
epsilon_subsegment = epsilon_xy_pointer[*spike * epsilon_xy_dim_c0] *
epsilon_t_pointer[counter_spike];
w_ptr = weights_pointer + *spike * weights_dim_c0;
memcpy(h_temp, h_subsegment, sizeof(float) * h_dim);
approximation_multiplication_function(
ap_h_ptr, w_ptr, pattern_size, number_of_trunc_bits,
number_of_frac_bits, ap_x_ptr, ap_y_ptr, ap_x_exponent_ptr,
ap_y_exponent_ptr, ap_h_exponent_ptr, ap_mask, ap_res_ptr,
sign_temp_ptr, approximation_enable);
// --------------------------
h_temp_sum = 0.0;
#pragma omp simd reduction(+ : h_temp_sum)
for (counter = 0; counter < h_dim; counter++) {
h_temp_sum += h_temp[counter];
}
if (h_temp_sum > 1E-10) {
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_temp[counter] *= temp_value;
}
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] += h_temp[counter];
}
if (forgetting_offset_local > 0.0) {
temp_value =
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] += temp_value;
}
epsilon_scale *= 1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
} else {
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
}
}
}
}
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_pointer[counter * h_dim_c1] = h_subsegment[counter] * temp_value;
}
delete[] h_temp;
delete[] h_subsegment;
return;
};
void HDynamicCNNManyIP::update_one_ip(
float* h_init_ptr, float* h_pointer, size_t h_dim_c1, size_t h_dim,
float* weights_pointer, size_t weights_dim_c0, int64_t* input_pointer,
size_t input_dim_c1, float* epsilon_xy_pointer, size_t epsilon_xy_dim_c0,
float* epsilon_t_pointer, size_t number_of_spikes, float forgetting_offset,
float forgetting_offset_local) {
float* h_temp = new float[h_dim];
float* h_subsegment = new float[h_dim];
memcpy(h_subsegment, h_init_ptr, sizeof(float) * h_dim);
size_t counter_spike;
size_t counter;
float h_temp_sum;
float temp_value;
float epsilon_subsegment;
float epsilon_scale = 1.0;
int64_t* spike;
float* w_ptr;
// --------------
for (counter_spike = 0; counter_spike < number_of_spikes; counter_spike++) {
if (epsilon_scale > 1E10) {
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] *= temp_value;
}
epsilon_scale = 1.0;
}
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0) {
epsilon_subsegment = epsilon_xy_pointer[*spike * epsilon_xy_dim_c0] *
epsilon_t_pointer[counter_spike];
w_ptr = weights_pointer + *spike * weights_dim_c0;
memcpy(h_temp, h_subsegment, sizeof(float) * h_dim);
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_temp[counter] *= w_ptr[counter];
}
h_temp_sum = 0.0;
#pragma omp simd reduction(+ : h_temp_sum)
for (counter = 0; counter < h_dim; counter++) {
h_temp_sum += h_temp[counter];
}
if (h_temp_sum > 1E-10) {
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_temp[counter] *= temp_value;
}
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] += h_temp[counter];
}
if (forgetting_offset_local > 0.0) {
temp_value =
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_subsegment[counter] += temp_value;
}
epsilon_scale *= 1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
} else {
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
}
}
}
}
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++) {
h_pointer[counter * h_dim_c1] = h_subsegment[counter] * temp_value;
}
delete[] h_temp;
delete[] h_subsegment;
return;
};
// ------------------------------------------------
void HDynamicCNNManyIP::gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim) {
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(14);
occupancy_kernel_phxy_plus_phxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY], display_debug);
occupancy_kernel_pxy_plus_v(dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V],
display_debug);
occupancy_kernel_pxy_times_v(dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V],
display_debug);
occupancy_kernel_phxy_fill_with_h(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H], display_debug);
occupancy_kernel_phxy_plus_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY], display_debug);
occupancy_kernel_pxy_reciprocal(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL], display_debug);
occupancy_kernel_phxy_fill_with_spike_selected_w(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W],
display_debug);
occupancy_kernel_phxy_times_phxy_equals_phxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY],
display_debug);
occupancy_kernel_pxy_set_to_v(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V], display_debug);
occupancy_kernel_phxy_one_over_sum_into_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY],
display_debug);
occupancy_kernel_phxy_times_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY], display_debug);
occupancy_kernel_pxy_time_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY], display_debug);
occupancy_kernel_approximation_pure_multiplication(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION],
display_debug);
occupancy_kernel_pxy_times_spike_selected_sxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY],
display_debug);
grid_and_thread_calculated = true;
return;
};
void HDynamicCNNManyIP::gpu_occupancy_export(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
int64_t setting_memory_addr, size_t setting_dim_0, size_t setting_dim_1) {
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
assert((grid_and_thread_calculated == true));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void HDynamicCNNManyIP::gpu_occupancy_import(int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == H_DYNAMIC_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(H_DYNAMIC_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
grid_and_thread_settings[counter_0].resize(
H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
bool HDynamicCNNManyIP::gpu_update(
float* h_init_ptr, float* h_pointer, size_t h_dim_c0, size_t h_dim_c1,
size_t h_dim_c2, size_t h_dim, float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0, size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer, float* weights_pointer, size_t weights_dim_c0,
int64_t* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, size_t number_of_spikes, size_t dim_x, size_t dim_y,
float forgetting_offset, float forgetting_offset_local,
size_t number_of_pattern, size_t gpu_tuning_factor,
bool approximation_multiplication_enable, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits,
uint32_t ap_mask) {
if (grid_and_thread_calculated == false) {
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
}
assert((grid_and_thread_calculated == true));
cudaError_t status;
size_t h_sum_dim_c0 = dim_x * dim_y;
size_t h_sum_dim_c1 = dim_y;
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
size_t pxy_block_dim_c0 = dim_x * dim_y;
size_t pxy_block_dim_c1 = dim_y;
float* w_memory = nullptr;
status = cudaMalloc((void**)&w_memory, number_of_pattern * h_dim * dim_x *
dim_y * sizeof(float));
assert((status == cudaSuccess));
float* h_temp_memory = nullptr;
status =
cudaMalloc((void**)&h_temp_memory,
number_of_pattern * h_dim * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
float* h_sum_memory = nullptr;
status = cudaMalloc((void**)&h_sum_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
float* epsilon_subsegment_memory = nullptr;
status = cudaMalloc((void**)&epsilon_subsegment_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
float* epsilon_scale_memory = nullptr;
status = cudaMalloc((void**)&epsilon_scale_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
float* forget_memory = nullptr;
status = cudaMalloc((void**)&forget_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
// ---
// Initialize h
kernel_phxy_fill_with_h<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][0],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][1],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][3],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][4],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][5])>>>(
h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// Set epsilon memory scale to 1.0
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_scale_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
for (size_t counter_spike = 0; counter_spike < number_of_spikes;
counter_spike++) {
// Get epsilon_t from gpu memory
float epsilon_t;
status = cudaMemcpy(&epsilon_t, &epsilon_t_pointer[counter_spike],
sizeof(float), cudaMemcpyDeviceToHost);
assert((status == cudaSuccess));
// Set epsilon memory subsegment to epsilon(t)
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_subsegment_memory, epsilon_t,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// Set epsilon memory subsegment to forgetting_offset_local
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
forget_memory, forgetting_offset_local,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// if (*spike >= 0) {
// epsilon_subsegment = *epsilon_xy_pointer[*spike *
// epsilon_xy_dim_c0]
kernel_pxy_times_spike_selected_sxy<<<
dim3(
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
[2]),
dim3(
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
[5])>>>(
epsilon_subsegment_memory, epsilon_xy_pointer, input_pointer,
counter_spike, input_dim_c0, input_dim_c1, input_dim_c2,
epsilon_xy_dim_c0, epsilon_xy_dim_c1, epsilon_xy_dim_c0,
epsilon_xy_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// Get the weight vectors according the spikes
kernel_phxy_fill_with_spike_selected_w<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[0],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[1],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[3],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[4],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[5])>>>(
w_memory, weights_pointer, input_pointer, counter_spike, weights_dim_c0,
input_dim_c0, input_dim_c1, input_dim_c2, h_dim_c0, h_dim_c1, h_dim_c2,
h_dim, phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// h_temp = h * w
if (approximation_multiplication_enable == false) {
kernel_phxy_times_phxy_equals_phxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[5])>>>(
h_pointer, w_memory, h_temp_memory,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY][6]);
} else {
kernel_approximation_pure_multiplication<<<
dim3(grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[0],
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[1],
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[2]),
dim3(grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[3],
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[4],
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION]
[5])>>>(
h_pointer, w_memory, h_temp_memory, number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask,
grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION][6]);
}
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// 1 / sum h_temp
kernel_phxy_one_over_sum_into_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY]
[5])>>>(
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// epsilon_scale / sum h_temp
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
h_sum_memory, epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// epsilon_subsegment * epsilon_scale / sum h_temp
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
h_sum_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// epsilon_scale * forget_memory which contains forgetting_offset_local
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
forget_memory, epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// delta_forget = epsilon_subsegment * epsilon_scale * forget_memory
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
forget_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// delta_h = h_temp_memory * epsilon_subsegment * epsilon_scale / sum h
kernel_phxy_times_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// h + delta_h
kernel_phxy_plus_phxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][5])>>>(
h_pointer, h_temp_memory,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// h + delta_h + delta_forget
kernel_phxy_plus_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][5])>>>(
h_pointer, forget_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
kernel_pxy_times_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][5])>>>(
epsilon_subsegment_memory, (1.0 + forgetting_offset),
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
kernel_pxy_plus_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][5])>>>(
epsilon_subsegment_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// epsilon_scale * epsilon_subsegment
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
epsilon_scale_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
if (((counter_spike > 0) && (counter_spike % 1000 == 0)) ||
(counter_spike + 1 == number_of_spikes)) {
kernel_pxy_reciprocal<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][0],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][1],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][3],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][4],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][5])>>>(
epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
kernel_phxy_times_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
h_pointer, epsilon_scale_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
// Set epsilon memory scale to 1.0
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_scale_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
}
// ------------
status = cudaFree(w_memory);
assert((status == cudaSuccess));
status = cudaFree(h_temp_memory);
assert((status == cudaSuccess));
status = cudaFree(h_sum_memory);
assert((status == cudaSuccess));
status = cudaFree(epsilon_subsegment_memory);
assert((status == cudaSuccess));
status = cudaFree(epsilon_scale_memory);
assert((status == cudaSuccess));
status = cudaFree(forget_memory);
assert((status == cudaSuccess));
return true;
};

View file

@ -0,0 +1,114 @@
#ifndef HDYNAMICCNNMANYIP
#define HDYNAMICCNNMANYIP
#include <cuda.h>
#include <unistd.h>
#include <cctype>
#include <iostream>
#include <vector>
#define ID_KERNEL_PHXY_PLUS_PHXY 0
#define ID_KERNEL_PXY_PLUS_V 1
#define ID_KERNEL_PXY_TIMES_V 2
#define ID_KERNEL_PHXY_FILL_WITH_H 3
#define ID_KERNEL_PHXY_PLUS_PXY 4
#define ID_KERNEL_PXY_RECIPROCAL 5
#define ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W 6
#define ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY 7
#define ID_KERNEL_PXY_SET_TO_V 8
#define ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY 9
#define ID_KERNEL_PHXY_TIMES_PXY 10
#define ID_KERNEL_PXY_TIME_PXY 11
#define ID_KERNEL_APPROXIMATION_MULTIPLICATION 12
#define ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY 13
#define H_DYNAMIC_NUMBER_OF_KERNELS 14
#define H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS 7
class HDynamicCNNManyIP {
public:
HDynamicCNNManyIP();
~HDynamicCNNManyIP();
bool update_entrypoint(int64_t h_pointer_addr, int64_t h_dim_0,
int64_t h_dim_1, int64_t h_dim_2, int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0, int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0, int64_t weights_pointer_addr,
int64_t weights_dim_0, int64_t weights_dim_1,
int64_t input_pointer_addr, int64_t input_dim_0,
int64_t input_dim_1, int64_t input_dim_2,
int64_t input_dim_3, int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0, int64_t number_of_processes,
float forgetting_offset, int64_t gpu_tuning_factor
// ,bool approximation_multiplication_enable, uint64_t
// number_of_frac_bits, bool approximation_enable,
// uint64_t number_of_trunc_bits
);
void gpu_occupancy_export(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
int64_t setting_memory_addr, size_t setting_dim_0,
size_t setting_dim_1);
void gpu_occupancy_import(int64_t setting_memory_addr, size_t setting_dim_0,
size_t setting_dim_1);
private:
bool update(float* h_init_ptr, float* h_pointer, size_t h_dim_c0,
size_t h_dim_c1, size_t h_dim_c2, size_t h_dim,
float* epsilon_xy_pointer, size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1, float* epsilon_t_pointer,
float* weights_pointer, size_t weights_dim_c0,
int64_t* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, size_t number_of_spikes, size_t dim_x,
size_t dim_y, float forgetting_offset,
float forgetting_offset_local, size_t pattern_id,
bool approximation_multiplication_enable,
uint64_t number_of_frac_bits, bool approximation_enable,
uint64_t number_of_trunc_bits, uint32_t ap_mask);
void update_one_ip(float* h_init_ptr, float* h_pointer, size_t h_dim_c1,
size_t h_dim, float* weights_pointer,
size_t weights_dim_c0, int64_t* input_pointer,
size_t input_dim_c1, float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0, float* epsilon_t_pointer,
size_t number_of_spikes, float forgetting_offset,
float forgetting_offset_local);
void update_one_ip_approx(
float* h_init_ptr, float* h_pointer, size_t h_dim_c1, size_t h_dim,
float* weights_pointer, size_t weights_dim_c0, int64_t* input_pointer,
size_t input_dim_c1, float* epsilon_xy_pointer, size_t epsilon_xy_dim_c0,
float* epsilon_t_pointer, size_t number_of_spikes,
float forgetting_offset, float forgetting_offset_local,
bool approximation_multiplication_enable, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits,
uint32_t ap_mask);
bool gpu_update(float* h_init_ptr, float* h_pointer, size_t h_dim_c0,
size_t h_dim_c1, size_t h_dim_c2, size_t h_dim,
float* epsilon_xy_pointer, size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1, float* epsilon_t_pointer,
float* weights_pointer, size_t weights_dim_c0,
int64_t* input_pointer, size_t input_dim_c0,
size_t input_dim_c1, size_t input_dim_c2,
size_t number_of_spikes, size_t dim_x, size_t dim_y,
float forgetting_offset, float forgetting_offset_local,
size_t number_of_pattern, size_t gpu_tuning_factor,
bool approximation_multiplication_enable,
uint64_t number_of_frac_bits, bool approximation_enable,
uint64_t number_of_trunc_bits, uint32_t ap_mask);
void gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim);
bool grid_and_thread_calculated = false;
std::vector<std::vector<size_t>> grid_and_thread_settings;
bool display_debug = false;
};
#endif /* HDYNAMICCNNMANYIP */

View file

@ -0,0 +1,288 @@
# Change to your python bin directory (tested with Python 3.10.4)
PYBIN=~/P3.10GPU/bin/
NVCC=/usr/local/cuda-12/bin/nvcc
CC=/usr/lib64/ccache/clang++
PYBIND11INCLUDE=`$(PYBIN)python3 -m pybind11 --includes`
PARAMETERS_O=--allow-unsupported-compiler \
-O3 -std=c++14 \
$(PYBIND11INCLUDE) \
-ccbin=$(CC) \
-Xcompiler "-fPIC -Wall -fopenmp=libomp" \
--gpu-architecture=sm_86 \
--generate-line-info
PARAMETERS_Linker=--allow-unsupported-compiler \
-Xcompiler "-shared -lm -lomp -lstdc++ -Wall" \
--gpu-architecture=sm_86 \
--generate-line-info
PYPOSTFIX=`$(PYBIN)python3-config --extension-suffix`
all: PyHDynamicCNNManyIP \
PySpikeGeneration2DManyIP \
PyMultiApp \
PyTestKernel
#######################
HDynamicCNNManyIP.o: \
HDynamicCNNManyIP.h \
HDynamicCNNManyIP.cu \
kernel_helper_functions.h \
kernel_phxy_plus_pxy.h \
kernel_pxy_plus_v.h \
kernel_pxy_time_pxy.h \
kernel_phxy_fill_with_h.h \
kernel_phxy_times_phxy_equals_phxy.h \
kernel_pxy_reciprocal.h \
kernel_pxy_times_v.h \
kernel_phxy_plus_phxy.h \
kernel_phxy_times_pxy.h \
kernel_pxy_set_to_v.h \
kernel_phxy_one_over_sum_into_pxy.h \
approximation_multiplication_function.h \
kernel_approximation_multiplication.h \
kernel_pxy_times_spike_selected_sxy.h \
kernel_phxy_fill_with_spike_selected_w.h
$(NVCC) $(PARAMETERS_O) -c HDynamicCNNManyIP.cu -o HDynamicCNNManyIP.o
PyHDynamicCNNManyIP.o: HDynamicCNNManyIP.h PyHDynamicCNNManyIP.cpp
$(NVCC) $(PARAMETERS_O) -c PyHDynamicCNNManyIP.cpp -o PyHDynamicCNNManyIP.o
PyHDynamicCNNManyIP: \
HDynamicCNNManyIP.o \
PyHDynamicCNNManyIP.o \
kernel_pxy_plus_v.o \
kernel_pxy_set_to_v.o \
kernel_pxy_reciprocal.o \
kernel_pxy_time_pxy.o \
kernel_pxy_times_v.o \
kernel_phxy_times_phxy_equals_phxy.o \
kernel_phxy_plus_phxy.o \
kernel_phxy_plus_pxy.o \
kernel_phxy_times_pxy.o \
kernel_phxy_fill_with_h.o\
kernel_helper_functions.o\
kernel_phxy_one_over_sum_into_pxy.o \
approximation_multiplication_function.o \
error_term.o \
kernel_approximation_multiplication.o \
kernel_pxy_times_spike_selected_sxy.o \
kernel_phxy_fill_with_spike_selected_w.o
$(NVCC) $(PARAMETERS_Linker) -o PyHDynamicCNNManyIP \
HDynamicCNNManyIP.o \
PyHDynamicCNNManyIP.o \
kernel_pxy_plus_v.o \
kernel_pxy_set_to_v.o \
kernel_pxy_reciprocal.o \
kernel_pxy_time_pxy.o \
kernel_pxy_times_v.o \
kernel_phxy_times_phxy_equals_phxy.o \
kernel_phxy_plus_phxy.o \
kernel_phxy_plus_pxy.o \
kernel_phxy_times_pxy.o \
kernel_phxy_fill_with_h.o \
kernel_helper_functions.o \
kernel_phxy_one_over_sum_into_pxy.o \
approximation_multiplication_function.o \
error_term.o \
kernel_approximation_multiplication.o \
kernel_pxy_times_spike_selected_sxy.o \
kernel_phxy_fill_with_spike_selected_w.o
cp PyHDynamicCNNManyIP PyHDynamicCNNManyIP$(PYPOSTFIX)
$(PYBIN)python3 pybind11_auto_pyi.py
#######################
SpikeGeneration2DManyIP.o: \
SpikeGeneration2DManyIP.h \
SpikeGeneration2DManyIP.cu \
kernel_spike_generation.h
$(NVCC) $(PARAMETERS_O) -c SpikeGeneration2DManyIP.cu -o SpikeGeneration2DManyIP.o
PySpikeGeneration2DManyIP.o: SpikeGeneration2DManyIP.h PySpikeGeneration2DManyIP.cpp
$(NVCC) $(PARAMETERS_O) -c PySpikeGeneration2DManyIP.cpp -o PySpikeGeneration2DManyIP.o
PySpikeGeneration2DManyIP: \
SpikeGeneration2DManyIP.o \
PySpikeGeneration2DManyIP.o \
kernel_helper_functions.o \
kernel_spike_generation.o
$(NVCC) $(PARAMETERS_Linker) -o PySpikeGeneration2DManyIP \
SpikeGeneration2DManyIP.o \
PySpikeGeneration2DManyIP.o \
kernel_helper_functions.o \
kernel_spike_generation.o
cp PySpikeGeneration2DManyIP PySpikeGeneration2DManyIP$(PYPOSTFIX)
$(PYBIN)python3 pybind11_auto_pyi.py
#######################
MultiApp.o: \
MultiApp.h \
MultiApp.cu \
approximation_multiplication_function.h \
kernel_approximation_multiplication.h\
error_term.cpp
$(NVCC) $(PARAMETERS_O) -c MultiApp.cu -o MultiApp.o
PyMultiApp.o: MultiApp.h PyMultiApp.cpp
$(NVCC) $(PARAMETERS_O) -c PyMultiApp.cpp -o PyMultiApp.o
PyMultiApp: \
MultiApp.o\
PyMultiApp.o \
approximation_multiplication_function.o \
error_term.o \
kernel_approximation_multiplication.o \
kernel_helper_functions.o
$(NVCC) $(PARAMETERS_Linker) -o PyMultiApp \
MultiApp.o\
PyMultiApp.o \
approximation_multiplication_function.o \
error_term.o \
kernel_approximation_multiplication.o \
kernel_helper_functions.o
cp PyMultiApp PyMultiApp$(PYPOSTFIX)
$(PYBIN)python3 pybind11_auto_pyi.py
#######################
clean:
rm -f PyHDynamicCNNManyIP
rm -f PySpikeGeneration2DManyIP
rm -f PyMultiApp
rm -f PyTestKernel
rm -f *.o
rm -f *.so
#######################
TestKernel.o: \
TestKernel.cu \
TestKernel.h \
kernel_helper_functions.h \
kernel_phxy_plus_pxy.h \
kernel_pxy_plus_v.h \
kernel_pxy_time_pxy.h \
kernel_phxy_fill_with_h.h \
kernel_phxy_times_phxy_equals_phxy.h \
kernel_pxy_reciprocal.h \
kernel_pxy_times_v.h \
kernel_phxy_plus_phxy.h \
kernel_phxy_times_pxy.h \
kernel_pxy_set_to_v.h\
kernel_phxy_one_over_sum_into_pxy.h\
kernel_pxy_times_spike_selected_sxy.h \
kernel_phxy_fill_with_spike_selected_w.h
$(NVCC) $(PARAMETERS_O) -c TestKernel.cu -o TestKernel.o
PyTestKernel.o: PyTestKernel.cpp TestKernel.h
$(NVCC) $(PARAMETERS_O) -c PyTestKernel.cpp -o PyTestKernel.o
PyTestKernel: \
TestKernel.o \
PyTestKernel.o \
kernel_pxy_plus_v.o \
kernel_pxy_set_to_v.o \
kernel_pxy_reciprocal.o \
kernel_pxy_time_pxy.o \
kernel_pxy_times_v.o \
kernel_phxy_times_phxy_equals_phxy.o \
kernel_phxy_plus_phxy.o \
kernel_phxy_plus_pxy.o \
kernel_phxy_times_pxy.o \
kernel_phxy_fill_with_h.o\
kernel_helper_functions.o\
kernel_phxy_one_over_sum_into_pxy.o\
kernel_pxy_times_spike_selected_sxy.o \
kernel_phxy_fill_with_spike_selected_w.o
$(NVCC) $(PARAMETERS_Linker) -o PyTestKernel \
TestKernel.o \
PyTestKernel.o \
kernel_pxy_plus_v.o \
kernel_pxy_set_to_v.o \
kernel_pxy_reciprocal.o \
kernel_pxy_time_pxy.o \
kernel_pxy_times_v.o \
kernel_phxy_times_phxy_equals_phxy.o \
kernel_phxy_plus_phxy.o \
kernel_phxy_plus_pxy.o \
kernel_phxy_times_pxy.o \
kernel_phxy_fill_with_h.o \
kernel_helper_functions.o \
kernel_phxy_one_over_sum_into_pxy.o \
kernel_pxy_times_spike_selected_sxy.o \
kernel_phxy_fill_with_spike_selected_w.o
cp PyTestKernel PyTestKernel$(PYPOSTFIX)
$(PYBIN)python3 pybind11_auto_pyi.py
kernel_pxy_plus_v.o: kernel_pxy_plus_v.cu kernel_pxy_plus_v.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_plus_v.cu -o kernel_pxy_plus_v.o
kernel_pxy_set_to_v.o: kernel_pxy_set_to_v.cu kernel_pxy_set_to_v.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_set_to_v.cu -o kernel_pxy_set_to_v.o
kernel_pxy_reciprocal.o: kernel_pxy_reciprocal.cu kernel_pxy_reciprocal.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_reciprocal.cu -o kernel_pxy_reciprocal.o
kernel_pxy_time_pxy.o: kernel_pxy_time_pxy.cu kernel_pxy_time_pxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_time_pxy.cu -o kernel_pxy_time_pxy.o
kernel_pxy_times_v.o: kernel_pxy_times_v.cu kernel_pxy_times_v.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_v.cu -o kernel_pxy_times_v.o
kernel_phxy_times_phxy_equals_phxy.o: kernel_phxy_times_phxy_equals_phxy.cu kernel_phxy_times_phxy_equals_phxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_phxy_equals_phxy.cu -o kernel_phxy_times_phxy_equals_phxy.o
kernel_phxy_plus_phxy.o: kernel_phxy_plus_phxy.cu kernel_phxy_plus_phxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_phxy.cu -o kernel_phxy_plus_phxy.o
kernel_phxy_plus_pxy.o: kernel_phxy_plus_pxy.cu kernel_phxy_plus_pxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_pxy.cu -o kernel_phxy_plus_pxy.o
kernel_phxy_times_pxy.o: kernel_phxy_times_pxy.cu kernel_phxy_times_pxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_pxy.cu -o kernel_phxy_times_pxy.o
kernel_phxy_fill_with_h.o: kernel_phxy_fill_with_h.cu kernel_phxy_fill_with_h.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_h.cu -o kernel_phxy_fill_with_h.o
kernel_helper_functions.o: kernel_helper_functions.cu kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_helper_functions.cu -o kernel_helper_functions.o
kernel_phxy_one_over_sum_into_pxy.o: kernel_phxy_one_over_sum_into_pxy.cu kernel_phxy_one_over_sum_into_pxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_one_over_sum_into_pxy.cu -o kernel_phxy_one_over_sum_into_pxy.o
kernel_phxy_fill_with_spike_selected_w.o: kernel_phxy_fill_with_spike_selected_w.cu kernel_phxy_fill_with_spike_selected_w.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_spike_selected_w.cu -o kernel_phxy_fill_with_spike_selected_w.o
kernel_spike_generation.o: kernel_spike_generation.cu kernel_spike_generation.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_spike_generation.cu -o kernel_spike_generation.o
kernel_approximation_multiplication.o: \
kernel_approximation_multiplication.cu \
kernel_approximation_multiplication.h \
kernel_helper_functions.h \
kernel_approximation_error_term.cu
$(NVCC) $(PARAMETERS_O) -c kernel_approximation_multiplication.cu -o kernel_approximation_multiplication.o
approximation_multiplication_function.o: \
approximation_multiplication_function.cpp \
approximation_multiplication_function.h \
error_term.h
$(NVCC) $(PARAMETERS_O) -c approximation_multiplication_function.cpp -o approximation_multiplication_function.o
error_term.o: error_term.cpp error_term.h
$(NVCC) $(PARAMETERS_O) -c error_term.cpp -o error_term.o
kernel_pxy_times_spike_selected_sxy.o: kernel_pxy_times_spike_selected_sxy.cu kernel_pxy_times_spike_selected_sxy.h kernel_helper_functions.h
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_spike_selected_sxy.cu -o kernel_pxy_times_spike_selected_sxy.o
# .o: .cu .h kernel_helper_functions.h
# $(NVCC) $(PARAMETERS_O) -c .cu -o .o

View file

@ -0,0 +1,273 @@
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <vector>
#include "MultiApp.h"
#include "approximation_multiplication_function.h"
#include "kernel_approximation_multiplication.h"
MultiApp::MultiApp(){
};
MultiApp::~MultiApp(){
};
bool MultiApp::update(float* np_input_pointer, float* np_weight_pointer,
float* np_output_pointer, int64_t pattern_dim,
int64_t feature_dim, int64_t x_dim, int64_t y_dim,
int64_t input_channel_dim, int64_t id_pattern,
bool approximation_enable, int64_t number_of_trunc_bits,
int64_t number_of_frac_bits) {
assert((id_pattern >= 0));
assert((id_pattern < pattern_dim));
float* np_input_pointer_pattern;
float* np_output_pointer_pattern;
float* input_ptr;
float* output_ptr;
float* w_ptr;
uint64_t pattern_size = input_channel_dim;
std::vector<float> ap_h_vector;
ap_h_vector.resize(pattern_size);
float* ap_h_ptr = ap_h_vector.data();
std::vector<uint32_t> ap_x_vector;
ap_x_vector.resize(pattern_size);
uint32_t* ap_x_ptr = ap_x_vector.data();
std::vector<uint32_t> ap_y_vector;
ap_y_vector.resize(pattern_size);
uint32_t* ap_y_ptr = ap_y_vector.data();
std::vector<uint32_t> ap_x_exponent_vector;
ap_x_exponent_vector.resize(pattern_size);
uint32_t* ap_x_exponent_ptr = ap_x_exponent_vector.data();
std::vector<uint32_t> ap_y_exponent_vector;
ap_y_exponent_vector.resize(pattern_size);
uint32_t* ap_y_exponent_ptr = ap_y_exponent_vector.data();
std::vector<uint32_t> ap_h_exponent_vector;
ap_h_exponent_vector.resize(pattern_size);
uint32_t* ap_h_exponent_ptr = ap_h_exponent_vector.data();
std::vector<uint64_t> ap_res_vector;
ap_res_vector.resize(pattern_size);
uint64_t* ap_res_ptr = ap_res_vector.data();
uint32_t ap_mask = static_cast<uint64_t>(pow(2, number_of_trunc_bits)) - 1;
std::vector<uint32_t> sign_temp_vector;
sign_temp_vector.resize(pattern_size);
uint32_t* sign_temp_ptr = sign_temp_vector.data();
uint64_t input_pattern_size = input_channel_dim * x_dim * y_dim;
uint64_t output_pattern_size = feature_dim * x_dim * y_dim;
np_input_pointer_pattern = np_input_pointer + id_pattern * input_pattern_size;
np_output_pointer_pattern =
np_output_pointer + id_pattern * output_pattern_size;
uint64_t counter;
uint64_t counter_x;
uint64_t counter_y;
uint64_t counter_feature;
uint64_t pos_xy;
uint64_t pos_xy_if;
float temp_sum;
uint64_t pattern_c_2 = x_dim * y_dim;
for (counter_x = 0; counter_x < x_dim; counter_x++) {
for (counter_y = 0; counter_y < y_dim; counter_y++) {
pos_xy = counter_y + counter_x * y_dim;
for (counter_feature = 0; counter_feature < feature_dim;
counter_feature++) {
pos_xy_if = counter_feature * pattern_c_2 + pos_xy;
input_ptr = np_input_pointer_pattern + pos_xy;
output_ptr = np_output_pointer_pattern + pos_xy_if;
w_ptr = np_weight_pointer + counter_feature * input_channel_dim;
#pragma omp simd
for (counter = 0; counter < pattern_size; counter++) {
ap_h_ptr[counter] = input_ptr[counter * pattern_c_2];
}
approximation_multiplication_function(
ap_h_ptr, w_ptr, pattern_size, number_of_trunc_bits,
number_of_frac_bits, ap_x_ptr, ap_y_ptr, ap_x_exponent_ptr,
ap_y_exponent_ptr, ap_h_exponent_ptr, ap_mask, ap_res_ptr,
sign_temp_ptr, approximation_enable);
temp_sum = 0.0;
#pragma omp simd reduction(+ : temp_sum)
for (counter = 0; counter < pattern_size; counter++) {
temp_sum += ap_h_ptr[counter];
}
output_ptr[0] = temp_sum;
}
}
}
return true;
};
bool MultiApp::update_entrypoint(
int64_t np_input_pointer_addr, int64_t np_weight_pointer_addr,
int64_t np_output_pointer_addr, int64_t pattern_dim, int64_t feature_dim,
int64_t x_dim, int64_t y_dim, int64_t input_channel_dim,
int64_t number_of_processes, bool approximation_enable,
int64_t number_of_trunc_bits, int64_t number_of_frac) {
int64_t number_of_pattern = pattern_dim;
int64_t pattern_id;
float* np_input_pointer = (float*)np_input_pointer_addr;
float* np_weight_pointer = (float*)np_weight_pointer_addr;
float* np_output_pointer = (float*)np_output_pointer_addr;
assert((np_input_pointer != nullptr));
assert((np_output_pointer != nullptr));
assert((np_weight_pointer != nullptr));
assert((pattern_dim > 0));
assert((feature_dim > 0));
assert((x_dim > 0));
assert((y_dim > 0));
assert((input_channel_dim > 0));
if (number_of_processes > 0) {
omp_set_num_threads(number_of_processes);
// For debugging: Only one thread
// omp_set_num_threads(1);
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
update(np_input_pointer, np_weight_pointer, np_output_pointer,
pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim,
pattern_id, approximation_enable, number_of_trunc_bits,
number_of_frac);
}
} else {
update_gpu(np_input_pointer, np_weight_pointer, np_output_pointer,
pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim,
approximation_enable, number_of_trunc_bits, number_of_frac);
}
return true;
};
void MultiApp::gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim) {
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(1);
occupancy_kernel_approximation_multiplication(
dim_x, dim_y, number_of_pattern, h_dim, grid_and_thread_settings[0],
display_debug);
grid_and_thread_calculated = true;
return;
};
void MultiApp::gpu_occupancy_export(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
assert((grid_and_thread_calculated == true));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void MultiApp::gpu_occupancy_import(int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == APPROXI_MULTI_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(APPROXI_MULTI_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
grid_and_thread_settings[counter_0].resize(
APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
void MultiApp::update_gpu(float* np_input_pointer, float* np_weight_pointer,
float* np_output_pointer, uint64_t pattern_dim,
uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim,
uint64_t input_channel_dim, bool approximation_enable,
uint64_t number_of_trunc_bits,
uint64_t number_of_frac_bits) {
if (grid_and_thread_calculated == false) {
gpu_occupancy_measure(x_dim, y_dim, pattern_dim, feature_dim);
}
assert((grid_and_thread_calculated == true));
uint32_t ap_mask = static_cast<uint64_t>(pow(2, number_of_trunc_bits)) - 1;
// std::cout << approximation_enable << std::endl;
// std::cout << number_of_trunc_bits << std::endl;
// std::cout << number_of_frac_bits << std::endl;
cudaError_t status;
size_t pfxy_block_dim_c0 = feature_dim * x_dim * y_dim;
size_t pfxy_block_dim_c1 = x_dim * y_dim;
size_t pfxy_block_dim_c2 = y_dim;
kernel_approximation_multiplication<<<
dim3(grid_and_thread_settings[0][0], grid_and_thread_settings[0][1],
grid_and_thread_settings[0][2]),
dim3(grid_and_thread_settings[0][3], grid_and_thread_settings[0][4],
grid_and_thread_settings[0][5])>>>(
np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim,
feature_dim, x_dim, y_dim, input_channel_dim,
grid_and_thread_settings[0][6], (x_dim * y_dim), number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask, pfxy_block_dim_c0,
pfxy_block_dim_c1, pfxy_block_dim_c2);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};

View file

@ -0,0 +1,60 @@
#ifndef MULTIAPP
#define MULTIAPP
#include <unistd.h>
#include <cctype>
#include <iostream>
#include <vector>
#define APPROXI_MULTI_NUMBER_OF_KERNELS 1
#define APPROXI_MULTI_NUMBER_OF_KERNELS_PARAMETERS 7
class MultiApp
{
public:
MultiApp();
~MultiApp();
bool update_entrypoint(
int64_t np_input_pointer_addr, int64_t np_weight_pointer_addr,
int64_t np_output_pointer_addr, int64_t pattern_dim, int64_t feature_dim,
int64_t x_dim, int64_t y_dim, int64_t input_channel_dim,
int64_t number_of_processes, bool approximation_enable,
int64_t number_of_trunc_bits, int64_t number_of_frac);
void gpu_occupancy_export(size_t dim_x, size_t dim_y, size_t number_of_pattern,
size_t h_dim, int64_t setting_memory_addr, size_t setting_dim_0, size_t setting_dim_1);
void gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
private:
bool update(float* np_input_pointer, float* np_weight_pointer,
float* np_output_pointer, int64_t pattern_dim,
int64_t feature_dim, int64_t x_dim, int64_t y_dim,
int64_t input_channel_dim, int64_t id_pattern,
bool approximation_enable, int64_t number_of_trunc_bits,
int64_t number_of_frac);
void update_gpu(float* input_pointer, float* weight_pointer,
float* output_pointer, uint64_t pattern_dim,
uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim,
uint64_t input_channel_dim,
bool approximation_enable, uint64_t number_of_trunc_bits,
uint64_t number_of_frac);
void gpu_occupancy_measure(size_t dim_x, size_t dim_y, size_t number_of_pattern,
size_t h_dim);
bool grid_and_thread_calculated = false;
std::vector<std::vector<size_t>> grid_and_thread_settings;
bool display_debug = false;
};
#endif /* MULTIAPP */

View file

@ -0,0 +1,18 @@
#include <pybind11/pybind11.h>
#include "HDynamicCNNManyIP.h"
namespace py = pybind11;
PYBIND11_MODULE(PyHDynamicCNNManyIP, m)
{
m.doc() = "HDynamicCNNManyIP Module";
py::class_<HDynamicCNNManyIP>(m, "HDynamicCNNManyIP")
.def(py::init<>())
.def("gpu_occupancy_export",
&HDynamicCNNManyIP::gpu_occupancy_export)
.def("gpu_occupancy_import",
&HDynamicCNNManyIP::gpu_occupancy_import)
.def("update",
&HDynamicCNNManyIP::update_entrypoint);
}

View file

@ -0,0 +1,20 @@
#
# AUTOMATICALLY GENERATED FILE, DO NOT EDIT!
#
"""HDynamicCNNManyIP Module"""
from __future__ import annotations
import PyHDynamicCNNManyIP
import typing
__all__ = [
"HDynamicCNNManyIP"
]
class HDynamicCNNManyIP():
def __init__(self) -> None: ...
def gpu_occupancy_export(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int) -> None: ...
def gpu_occupancy_import(self, arg0: int, arg1: int, arg2: int) -> None: ...
def update(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int, arg12: int, arg13: int, arg14: int, arg15: int, arg16: int, arg17: int, arg18: int, arg19: int, arg20: int, arg21: int, arg22: float, arg23: int) -> bool: ...
pass

View file

@ -0,0 +1,15 @@
#include <pybind11/pybind11.h>
#include "MultiApp.h"
namespace py = pybind11;
PYBIND11_MODULE(PyMultiApp, m) {
m.doc() = "MultiApp Module";
py::class_<MultiApp>(m, "MultiApp")
.def(py::init<>())
.def("gpu_occupancy_export", &MultiApp::gpu_occupancy_export)
.def("gpu_occupancy_import", &MultiApp::gpu_occupancy_import)
.def("update_entrypoint", &MultiApp::update_entrypoint);
}

View file

@ -0,0 +1,20 @@
#
# AUTOMATICALLY GENERATED FILE, DO NOT EDIT!
#
"""MultiApp Module"""
from __future__ import annotations
import PyMultiApp
import typing
__all__ = [
"MultiApp"
]
class MultiApp():
def __init__(self) -> None: ...
def gpu_occupancy_export(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int) -> None: ...
def gpu_occupancy_import(self, arg0: int, arg1: int, arg2: int) -> None: ...
def update_entrypoint(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int, arg7: int, arg8: int, arg9: bool, arg10: int, arg11: int) -> bool: ...
pass

View file

@ -0,0 +1,19 @@
#include <pybind11/pybind11.h>
#include "SpikeGeneration2DManyIP.h"
namespace py = pybind11;
PYBIND11_MODULE(PySpikeGeneration2DManyIP, m)
{
m.doc() = "SpikeGeneration2DManyIP Module";
py::class_<SpikeGeneration2DManyIP>(m, "SpikeGeneration2DManyIP")
.def(py::init<>())
.def("gpu_occupancy_export",
&SpikeGeneration2DManyIP::gpu_occupancy_export)
.def("gpu_occupancy_import",
&SpikeGeneration2DManyIP::gpu_occupancy_import)
.def("spike_generation",
&SpikeGeneration2DManyIP::spike_generation_entrypoint);
}

View file

@ -0,0 +1,20 @@
#
# AUTOMATICALLY GENERATED FILE, DO NOT EDIT!
#
"""SpikeGeneration2DManyIP Module"""
from __future__ import annotations
import PySpikeGeneration2DManyIP
import typing
__all__ = [
"SpikeGeneration2DManyIP"
]
class SpikeGeneration2DManyIP():
def __init__(self) -> None: ...
def gpu_occupancy_export(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int) -> None: ...
def gpu_occupancy_import(self, arg0: int, arg1: int, arg2: int) -> None: ...
def spike_generation(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int, arg12: int, arg13: int, arg14: int, arg15: int) -> bool: ...
pass

View file

@ -0,0 +1,37 @@
#include <pybind11/pybind11.h>
#include "TestKernel.h"
namespace py = pybind11;
PYBIND11_MODULE(PyTestKernel, m) {
m.doc() = "TestKernel Module";
py::class_<TestKernel>(m, "TestKernel")
.def(py::init<>())
.def("test_kernel_pxy_times_spike_selected_sxy",
&TestKernel::test_kernel_pxy_times_spike_selected_sxy)
.def("test_kernel_phxy_fill_with_spike_selected_w",
&TestKernel::test_kernel_phxy_fill_with_spike_selected_w)
.def("test_kernel_phxy_plus_pxy", &TestKernel::test_kernel_phxy_plus_pxy)
.def("test_kernel_phxy_fill_with_h",
&TestKernel::test_kernel_phxy_fill_with_h)
.def("test_kernel_phxy_times_pxy",
&TestKernel::test_kernel_phxy_times_pxy)
.def("test_kernel_phxy_one_over_sum_into_pxy",
&TestKernel::test_kernel_phxy_one_over_sum_into_pxy)
.def("test_kernel_phxy_plus_phxy",
&TestKernel::test_kernel_phxy_plus_phxy)
.def("test_kernel_phxy_times_phxy_equals_phxy",
&TestKernel::test_kernel_phxy_times_phxy_equals_phxy)
.def("test_kernel_pxy_time_pxy", &TestKernel::test_kernel_pxy_time_pxy)
.def("test_kernel_pxy_reciprocal",
&TestKernel::test_kernel_pxy_reciprocal)
.def("test_kernel_pxy_plus_v", &TestKernel::test_kernel_pxy_plus_v)
.def("test_kernel_pxy_times_v", &TestKernel::test_kernel_pxy_times_v)
.def("test_kernel_pxy_set_to_v", &TestKernel::test_kernel_pxy_set_to_v);
}

View file

@ -0,0 +1,30 @@
#
# AUTOMATICALLY GENERATED FILE, DO NOT EDIT!
#
"""TestKernel Module"""
from __future__ import annotations
import PyTestKernel
import typing
__all__ = [
"TestKernel"
]
class TestKernel():
def __init__(self) -> None: ...
def test_kernel_phxy_fill_with_h(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int) -> None: ...
def test_kernel_phxy_fill_with_spike_selected_w(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int, arg12: int, arg13: int, arg14: int, arg15: int) -> None: ...
def test_kernel_phxy_one_over_sum_into_pxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int) -> None: ...
def test_kernel_phxy_plus_phxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int) -> None: ...
def test_kernel_phxy_plus_pxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int) -> None: ...
def test_kernel_phxy_times_phxy_equals_phxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int) -> None: ...
def test_kernel_phxy_times_pxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int) -> None: ...
def test_kernel_pxy_plus_v(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: float, arg6: int) -> None: ...
def test_kernel_pxy_reciprocal(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int) -> None: ...
def test_kernel_pxy_set_to_v(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: float, arg6: int) -> None: ...
def test_kernel_pxy_time_pxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int) -> None: ...
def test_kernel_pxy_times_spike_selected_sxy(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int, arg10: int, arg11: int, arg12: int, arg13: int, arg14: int, arg15: int) -> None: ...
def test_kernel_pxy_times_v(self, arg0: int, arg1: int, arg2: int, arg3: int, arg4: bool, arg5: float, arg6: int) -> None: ...
pass

View file

@ -0,0 +1,261 @@
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <iostream>
#include "SpikeGeneration2DManyIP.h"
#include "kernel_spike_generation.h"
SpikeGeneration2DManyIP::SpikeGeneration2DManyIP(){
};
SpikeGeneration2DManyIP::~SpikeGeneration2DManyIP(){
};
bool SpikeGeneration2DManyIP::spike_generation_entrypoint(
int64_t input_pointer_addr, int64_t input_dim_0, int64_t input_dim_1,
int64_t input_dim_2, int64_t input_dim_3,
int64_t random_values_pointer_addr, int64_t random_values_dim_0,
int64_t random_values_dim_1, int64_t random_values_dim_2,
int64_t random_values_dim_3, int64_t output_pointer_addr,
int64_t output_dim_0, int64_t output_dim_1, int64_t output_dim_2,
int64_t output_dim_3, int64_t number_of_cpu_processes) {
float* input_pointer = (float*)input_pointer_addr;
float* random_values_pointer = (float*)random_values_pointer_addr;
int64_t* output_pointer = (int64_t*)output_pointer_addr;
// Input
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
// Random
assert((random_values_pointer != nullptr));
assert((random_values_dim_0 > 0));
assert((random_values_dim_1 > 0));
assert((random_values_dim_2 > 0));
assert((random_values_dim_3 > 0));
// Output
assert((output_pointer != nullptr));
assert((output_dim_0 > 0));
assert((output_dim_1 > 0));
assert((output_dim_2 > 0));
assert((output_dim_3 > 0));
// Input
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
// Random
size_t random_values_dim_c0 =
random_values_dim_1 * random_values_dim_2 * random_values_dim_3;
size_t random_values_dim_c1 = random_values_dim_2 * random_values_dim_3;
size_t random_values_dim_c2 = random_values_dim_3;
// Output
size_t output_dim_c0 = output_dim_1 * output_dim_2 * output_dim_3;
size_t output_dim_c1 = output_dim_2 * output_dim_3;
size_t output_dim_c2 = output_dim_3;
size_t number_of_pattern = input_dim_0;
size_t h_dim = input_dim_1;
size_t spike_dim = output_dim_1;
size_t x_dim = output_dim_2;
size_t y_dim = output_dim_2;
if (number_of_cpu_processes > 0) {
omp_set_num_threads(number_of_cpu_processes);
// DEBUG:
// omp_set_num_threads(1);
size_t pattern_id;
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
spike_generation(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, pattern_id);
}
} else {
gpu_spike_generation(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, number_of_pattern);
}
return true;
};
bool SpikeGeneration2DManyIP::spike_generation(
float* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* output_pointer, size_t output_dim_c0,
size_t output_dim_c1, size_t output_dim_c2, size_t x_dim, size_t y_dim,
size_t spike_dim, size_t h_dim, size_t pattern_id) {
size_t counter;
size_t counter_x = 0;
size_t counter_y = 0;
float* p_ptr = nullptr;
int64_t* out_ptr = nullptr;
float* rand_ptr = nullptr;
for (counter_x = 0; counter_x < x_dim; counter_x++) {
for (counter_y = 0; counter_y < y_dim; counter_y++) {
p_ptr = input_pointer + pattern_id * input_dim_c0 +
counter_x * input_dim_c2 + counter_y;
// + counter * input_dim_c1
out_ptr = output_pointer + pattern_id * output_dim_c0 +
counter_x * output_dim_c2 + counter_y;
// + counter * output_dim_c1
rand_ptr = random_values_pointer + pattern_id * random_values_dim_c0 +
counter_x * random_values_dim_c2 + counter_y;
// + counter * random_values_dim_c1
for (counter = 0; counter < spike_dim; counter++) {
out_ptr[counter * output_dim_c1] =
lower_bound(p_ptr, h_dim, input_dim_c1,
rand_ptr[counter * random_values_dim_c1]);
}
}
}
return true;
};
// algorithmic idea stolen from libc++
size_t SpikeGeneration2DManyIP::lower_bound(float* data_ptr, size_t data_length,
size_t data_ptr_stride,
float compare_to_value) {
size_t start_of_range = 0;
size_t length_of_range = data_length;
while (length_of_range != 0) {
size_t half_length = length_of_range >> 1;
size_t actual_position = start_of_range + half_length;
if (data_ptr[actual_position * data_ptr_stride] < compare_to_value) {
start_of_range = ++actual_position;
length_of_range -= half_length + 1;
} else
length_of_range = half_length;
}
return start_of_range;
};
void SpikeGeneration2DManyIP::gpu_occupancy_measure(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t spike_dim) {
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(1);
occupancy_kernel_spike_generation(dim_x, dim_y, number_of_pattern, spike_dim,
grid_and_thread_settings[0], display_debug);
grid_and_thread_calculated = true;
return;
};
void SpikeGeneration2DManyIP::gpu_occupancy_export(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t spike_dim,
int64_t setting_memory_addr, size_t setting_dim_0, size_t setting_dim_1) {
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, spike_dim);
assert((grid_and_thread_calculated == true));
assert(
(grid_and_thread_settings.size() == SPIKE_GENERATION_NUMBER_OF_KERNELS));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void SpikeGeneration2DManyIP::gpu_occupancy_import(int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1) {
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == SPIKE_GENERATION_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(SPIKE_GENERATION_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++) {
grid_and_thread_settings[counter_0].resize(
SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++) {
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
bool SpikeGeneration2DManyIP::gpu_spike_generation(
float* input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* output_pointer, size_t output_dim_c0,
size_t output_dim_c1, size_t output_dim_c2, size_t x_dim, size_t y_dim,
size_t spike_dim, size_t h_dim, size_t number_of_pattern) {
if (grid_and_thread_calculated == false) {
gpu_occupancy_measure(x_dim, y_dim, number_of_pattern, spike_dim);
}
assert((grid_and_thread_calculated == true));
cudaError_t status;
assert((x_dim < 65535));
assert((y_dim < 65535));
size_t psxy_block_dim_c0 = spike_dim * x_dim * y_dim;
size_t psxy_block_dim_c1 = x_dim * y_dim;
size_t psxy_block_dim_c2 = y_dim;
kernel_spike_generation<<<
dim3(grid_and_thread_settings[0][0], grid_and_thread_settings[0][1],
grid_and_thread_settings[0][2]),
dim3(grid_and_thread_settings[0][3], grid_and_thread_settings[0][4],
grid_and_thread_settings[0][5])>>>(
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
random_values_pointer, random_values_dim_c0, random_values_dim_c1,
random_values_dim_c2, output_pointer, output_dim_c0, output_dim_c1,
output_dim_c2, x_dim, y_dim, spike_dim, h_dim, psxy_block_dim_c0,
psxy_block_dim_c1, psxy_block_dim_c2, grid_and_thread_settings[0][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
return true;
};

View file

@ -0,0 +1,87 @@
#ifndef SPIKEGENERATION2DMANYIP
#define SPIKEGENERATION2DMANYIP
#include <unistd.h>
#include <cctype>
#include <iostream>
#include <vector>
#define SPIKE_GENERATION_NUMBER_OF_KERNELS 1
#define SPIKE_GENERATION_NUMBER_OF_KERNELS_PARAMETERS 7
class SpikeGeneration2DManyIP
{
public:
SpikeGeneration2DManyIP();
~SpikeGeneration2DManyIP();
bool spike_generation_entrypoint(
int64_t input_pointer_addr, int64_t input_dim_0,
int64_t input_dim_1, int64_t input_dim_2, int64_t input_dim_3,
int64_t random_values_pointer_addr, int64_t random_values_dim_0,
int64_t random_values_dim_1, int64_t random_values_dim_2,
int64_t random_values_dim_3, int64_t output_pointer_addr,
int64_t output_dim_0, int64_t output_dim_1, int64_t output_dim_2,
int64_t output_dim_3, int64_t number_of_cpu_processes);
bool spike_generation(
float* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
float* random_values_pointer,
size_t random_values_dim_c0,
size_t random_values_dim_c1,
size_t random_values_dim_c2,
int64_t* output_pointer,
size_t output_dim_c0,
size_t output_dim_c1,
size_t output_dim_c2,
size_t x_dim,
size_t y_dim,
size_t spike_dim,
size_t h_dim,
size_t pattern_id);
bool gpu_spike_generation(
float* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
float* random_values_pointer,
size_t random_values_dim_c0,
size_t random_values_dim_c1,
size_t random_values_dim_c2,
int64_t* output_pointer,
size_t output_dim_c0,
size_t output_dim_c1,
size_t output_dim_c2,
size_t x_dim,
size_t y_dim,
size_t spike_dim,
size_t h_dim,
size_t number_of_pattern);
void gpu_occupancy_export(size_t dim_x, size_t dim_y, size_t number_of_pattern,
size_t spike_dim, int64_t setting_memory_addr, size_t setting_dim_0, size_t setting_dim_1);
void gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
private:
size_t lower_bound(float* data_ptr, size_t data_length,
size_t data_ptr_stride,
float compare_to_value);
void gpu_occupancy_measure(size_t dim_x, size_t dim_y, size_t number_of_pattern,
size_t spike_dim);
bool grid_and_thread_calculated = false;
std::vector<std::vector<size_t>> grid_and_thread_settings;
bool display_debug = false;
};
#endif /* SPIKEGENERATION2DMANYIP */

View file

@ -0,0 +1,329 @@
#include <cassert>
#include <iostream>
#include <vector>
#include "TestKernel.h"
#include "kernel_phxy_fill_with_h.h"
#include "kernel_phxy_fill_with_spike_selected_w.h"
#include "kernel_phxy_one_over_sum_into_pxy.h"
#include "kernel_phxy_plus_phxy.h"
#include "kernel_phxy_plus_pxy.h"
#include "kernel_phxy_times_phxy_equals_phxy.h"
#include "kernel_phxy_times_pxy.h"
#include "kernel_pxy_plus_v.h"
#include "kernel_pxy_reciprocal.h"
#include "kernel_pxy_set_to_v.h"
#include "kernel_pxy_time_pxy.h"
#include "kernel_pxy_times_spike_selected_sxy.h"
#include "kernel_pxy_times_v.h"
TestKernel::TestKernel(){
};
TestKernel::~TestKernel(){
};
void TestKernel::test_kernel_pxy_times_spike_selected_sxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, int64_t pxy_memory_addr, int64_t sxy_memory_addr,
int64_t spike_memory_addr, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1) {
float* pxy_memory = (float*)pxy_memory_addr;
float* sxy_memory = (float*)sxy_memory_addr;
int64_t* spike_memory = (int64_t*)spike_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_times_spike_selected_sxy(dim_x, dim_y, number_of_pattern,
h_dim, setting, display_debug);
size_t pxy_block_dim_c0 = dim_x * dim_y;
size_t pxy_block_dim_c1 = dim_y;
kernel_pxy_times_spike_selected_sxy<<<
dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory, sxy_memory, spike_memory, spike_time, spike_dim_c0,
spike_dim_c1, spike_dim_c2, pxy_dim_c0, pxy_dim_c1, sxy_dim_c0,
sxy_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim, bool display_debug,
int64_t phxy_memory_a_addr,
int64_t phxy_memory_b_addr) {
float* phxy_memory_a = (float*)phxy_memory_a_addr;
float* phxy_memory_b = (float*)phxy_memory_b_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_plus_phxy(dim_x, dim_y, number_of_pattern, h_dim,
setting, display_debug);
kernel_phxy_plus_phxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
phxy_memory_a, phxy_memory_b, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, float value,
int64_t pxy_memory_addr) {
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_times_v(dim_x, dim_y, number_of_pattern, h_dim, setting,
display_debug);
kernel_pxy_times_v<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory, value, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t spike_time, size_t weights_dim_c0,
size_t spike_dim_c0, size_t spike_dim_c1, size_t spike_dim_c2,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2,
int64_t phxy_memory_addr, int64_t weight_memory_addr,
int64_t spike_memory_addr) {
float* phxy_memory = (float*)phxy_memory_addr;
float* weight_memory = (float*)weight_memory_addr;
int64_t* spike_memory = (int64_t*)spike_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_fill_with_spike_selected_w(
dim_x, dim_y, number_of_pattern, h_dim, setting, display_debug);
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
kernel_phxy_fill_with_spike_selected_w<<<
dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
phxy_memory, weight_memory, spike_memory, spike_time, weights_dim_c0,
spike_dim_c0, spike_dim_c1, spike_dim_c2, phxy_dim_c0, phxy_dim_c1,
phxy_dim_c2, h_dim, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_times_phxy_equals_phxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, int64_t phxy_memory_a_addr, int64_t phxy_memory_b_addr,
int64_t phxy_memory_out_addr) {
float* phxy_memory_a = (float*)phxy_memory_a_addr;
float* phxy_memory_b = (float*)phxy_memory_b_addr;
float* phxy_memory_out = (float*)phxy_memory_out_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_times_phxy_equals_phxy(dim_x, dim_y, number_of_pattern,
h_dim, setting, display_debug);
kernel_phxy_times_phxy_equals_phxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4],
setting[5])>>>(
phxy_memory_a, phxy_memory_b, phxy_memory_out, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, float value,
int64_t pxy_memory_addr) {
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_plus_v(dim_x, dim_y, number_of_pattern, h_dim, setting,
display_debug);
kernel_pxy_plus_v<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory, value, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim, bool display_debug,
int64_t pxy_memory_a_addr,
int64_t pxy_memory_b_addr) {
float* pxy_memory_a = (float*)pxy_memory_a_addr;
float* pxy_memory_b = (float*)pxy_memory_b_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_time_pxy(dim_x, dim_y, number_of_pattern, h_dim, setting,
display_debug);
kernel_pxy_time_pxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory_a, pxy_memory_b, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_plus_pxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr, int64_t pxy_memory_addr) {
float* phxy_memory = (float*)phxy_memory_addr;
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_plus_pxy(dim_x, dim_y, number_of_pattern, h_dim,
setting, display_debug);
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
kernel_phxy_plus_pxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
phxy_memory, pxy_memory, phxy_dim_c0, phxy_dim_c1, phxy_dim_c2, h_dim,
pxy_dim_c0, pxy_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_one_over_sum_into_pxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr, int64_t pxy_memory_addr) {
float* phxy_memory = (float*)phxy_memory_addr;
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_one_over_sum_into_pxy(dim_x, dim_y, number_of_pattern,
h_dim, setting, display_debug);
size_t pxy_block_dim_c0 = dim_x * dim_y;
size_t pxy_block_dim_c1 = dim_y;
kernel_phxy_one_over_sum_into_pxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4],
setting[5])>>>(
phxy_memory, pxy_memory, phxy_dim_c0, phxy_dim_c1, phxy_dim_c2, h_dim,
pxy_dim_c0, pxy_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim, bool display_debug,
int64_t pxy_memory_addr) {
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_reciprocal(dim_x, dim_y, number_of_pattern, h_dim,
setting, display_debug);
kernel_pxy_reciprocal<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_fill_with_h(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, int64_t h_memory_addr, int64_t phxy_memory_addr) {
float* h_memory = (float*)h_memory_addr;
float* phxy_memory = (float*)phxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_fill_with_h(dim_x, dim_y, number_of_pattern, h_dim,
setting, display_debug);
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
kernel_phxy_fill_with_h<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
h_memory, phxy_memory, phxy_dim_c0, phxy_dim_c1, phxy_dim_c2, h_dim,
phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_phxy_times_pxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr, int64_t pxy_memory_addr) {
float* phxy_memory = (float*)phxy_memory_addr;
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_phxy_times_pxy(dim_x, dim_y, number_of_pattern, h_dim,
setting, display_debug);
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
kernel_phxy_times_pxy<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
phxy_memory, pxy_memory, phxy_dim_c0, phxy_dim_c1, phxy_dim_c2, h_dim,
pxy_dim_c0, pxy_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};
void TestKernel::test_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim, bool display_debug,
float set_value,
int64_t pxy_memory_addr) {
float* pxy_memory = (float*)pxy_memory_addr;
std::vector<size_t> setting;
occupancy_kernel_pxy_set_to_v(dim_x, dim_y, number_of_pattern, h_dim, setting,
display_debug);
kernel_pxy_set_to_v<<<dim3(setting[0], setting[1], setting[2]),
dim3(setting[3], setting[4], setting[5])>>>(
pxy_memory, set_value, setting[6]);
cudaError_t status;
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
};

View file

@ -0,0 +1,89 @@
class TestKernel {
public:
TestKernel();
~TestKernel();
void test_kernel_pxy_times_spike_selected_sxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, int64_t pxy_memory_addr, int64_t sxy_memory_addr,
int64_t spike_memory_addr, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1);
// --- phxy
void test_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t spike_time, size_t weights_dim_c0,
size_t spike_dim_c0, size_t spike_dim_c1, size_t spike_dim_c2,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2,
int64_t phxy_memory_addr, int64_t weight_memory_addr,
int64_t spike_memory_addr);
void test_kernel_phxy_one_over_sum_into_pxy(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr, int64_t pxy_memory_addr);
void test_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0,
size_t phxy_dim_c1, size_t phxy_dim_c2,
int64_t h_memory_addr,
int64_t phxy_memory_addr);
void test_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0,
size_t phxy_dim_c1, size_t phxy_dim_c2,
size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr,
int64_t pxy_memory_addr);
void test_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, size_t phxy_dim_c0,
size_t phxy_dim_c1, size_t phxy_dim_c2,
size_t pxy_dim_c0, size_t pxy_dim_c1,
int64_t phxy_memory_addr,
int64_t pxy_memory_addr);
void test_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim, bool display_debug,
int64_t phxy_memory_a_addr,
int64_t phxy_memory_b_addr,
int64_t phxy_memory_out_addr);
void test_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug,
int64_t phxy_memory_a_addr,
int64_t phxy_memory_b_addr);
// --- pxy
void test_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, float value,
int64_t pxy_memory_addr);
void test_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, int64_t pxy_memory_a_addr,
int64_t pxy_memory_b_addr);
void test_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, float value,
int64_t pxy_memory_addr);
void test_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, int64_t pxy_memory_addr);
void test_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
bool display_debug, float value,
int64_t pxy_memory_addr);
};

View file

@ -0,0 +1,165 @@
#include <unistd.h>
#include <bitset>
#include <cassert>
#include <cctype>
#include "approximation_multiplication_function.h"
#include "error_term.h"
// Best way to plot the bits
// std::cout << std::bitset<32>(ap_y_ptr[1]) << "\n";
// The result needs to be written back into h_pointer (which contains h)
// Don't write to w_pointer.
void approximation_multiplication_function(
float* h_pointer, float* w_pointer, int64_t pattern_length,
uint64_t number_of_trunc_bits, uint64_t number_of_frac_bits,
uint32_t* ap_x_ptr, uint32_t* ap_y_ptr, uint32_t* ap_x_exponent_ptr,
uint32_t* ap_y_exponent_ptr, uint32_t* ap_h_exponent_ptr, uint32_t ap_mask,
uint64_t* ap_res_ptr, uint32_t* sign_temp_ptr, bool approximation_enable)
{
uint64_t counter;
uint32_t* w_pointer_mod = (uint32_t*)w_pointer;
uint32_t* h_pointer_mod = (uint32_t*)h_pointer;
// Calculate the new sign
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
sign_temp_ptr[counter] = (w_pointer_mod[counter] & 0x80000000) ^
(h_pointer_mod[counter] & 0x80000000);
}
// Extract the exponent
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_x_exponent_ptr[counter] = (h_pointer_mod[counter] << 1) >> 24;
}
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_y_exponent_ptr[counter] = (w_pointer_mod[counter] << 1) >> 24;
}
// Cast and "normalize"
uint64_t shift_value = 32 - number_of_frac_bits;
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_x_ptr[counter] =
((h_pointer_mod[counter] << 8) | 0x80000000) >> shift_value;
}
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_y_ptr[counter] =
((w_pointer_mod[counter] << 8) | 0x80000000) >> shift_value;
}
// Make the zero -g-r-e-a-t- correct again
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
if (h_pointer[counter] == 0)
{
ap_x_ptr[counter] = 0;
}
}
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
if (w_pointer[counter] == 0)
{
ap_y_ptr[counter] = 0;
}
}
// res = x*y
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_res_ptr[counter] = static_cast<uint64_t>(ap_x_ptr[counter]) * static_cast<uint64_t>(ap_y_ptr[counter]);
}
uint32_t temp;
if (approximation_enable == true)
{
// Go through the vector values
for (counter = 0; counter < pattern_length; counter++)
{
temp = error_term(ap_y_ptr[counter], ap_x_ptr[counter], ap_mask,
number_of_trunc_bits);
if (temp > ap_res_ptr[counter])
{
ap_res_ptr[counter] = 0;
}
else
{
ap_res_ptr[counter] -= temp;
}
}
}
// Cast from int to float
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
h_pointer[counter] = static_cast<float>(ap_res_ptr[counter]);
}
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_h_exponent_ptr[counter] = (h_pointer_mod[counter] << 1) >> 24;
}
// devide by the 2^number_of_frac_bits
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
ap_h_exponent_ptr[counter] -= 2 * number_of_frac_bits;
}
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
temp = ap_x_exponent_ptr[counter] + ap_y_exponent_ptr[counter] +
ap_h_exponent_ptr[counter];
if (temp > 252)
{
ap_h_exponent_ptr[counter] = temp - 252;
}
else
{
// Here I try to catch the case that the new exponent is too small
ap_h_exponent_ptr[counter] = 0;
}
}
// Remove the old exponent
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
h_pointer_mod[counter] = (h_pointer_mod[counter] << 9) >> 9;
}
// Install the new exponent
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
h_pointer_mod[counter] += ap_h_exponent_ptr[counter] << 23;
}
// Add the sign back
#pragma omp simd
for (counter = 0; counter < pattern_length; counter++)
{
h_pointer_mod[counter] += sign_temp_ptr[counter];
}
return;
}

View file

@ -0,0 +1,11 @@
#ifndef APPROXIMATION_MULTIPLICATION_FUNCTION
#define APPROXIMATION_MULTIPLICATION_FUNCTION
void approximation_multiplication_function(
float* h_pointer, float* w_pointer, int64_t pattern_length,
uint64_t number_of_trunc_bits, uint64_t number_of_frac_bits,
uint32_t* ap_x_ptr, uint32_t* ap_y_ptr, uint32_t* ap_x_exponent_ptr,
uint32_t* ap_y_exponent_ptr, uint32_t* ap_h_exponent_ptr, uint32_t ap_mask,
uint64_t* ap_res_ptr, uint32_t* sign_temp_ptr, bool approximation_enable);
#endif /* APPROXIMATION_MULTIPLICATION_FUNCTION */

View file

@ -0,0 +1,34 @@
#include <unistd.h>
#include <cassert>
#include <cctype>
#include <iostream>
#include "error_term.h"
uint32_t error_term(uint32_t a, uint32_t b, uint32_t ap_mask,
uint32_t number_of_trunc_bits)
{
uint32_t error_value = 0;
uint32_t temp_shift_a = a;
uint32_t temp_shift_b = b & ap_mask;
uint32_t counter_trunc;
uint32_t temp;
// Go through the bits
for (counter_trunc = 0; counter_trunc < number_of_trunc_bits;
counter_trunc++)
{
temp = temp_shift_a & 1;
if (temp == 1)
{
error_value += temp_shift_b & ap_mask;
}
temp_shift_a >>= 1;
temp_shift_b <<= 1;
}
return error_value;
};

View file

@ -0,0 +1,7 @@
#ifndef ERROR_TERM
#define ERROR_TERM
uint32_t error_term(uint32_t a, uint32_t b, uint32_t ap_mask,
uint32_t number_of_trunc_bits);
#endif /* ERROR_TERM */

View file

@ -0,0 +1,31 @@
#include <cassert>
#include <iostream>
__device__ uint32_t gpu_error_term(uint32_t ap_weight_mantissa,
uint32_t ap_input_mantissa,
uint32_t ap_mask,
uint32_t number_of_trunc_bits)
{
uint32_t error_value = 0;
uint32_t temp_shift_a = ap_weight_mantissa;
uint32_t temp_shift_b = ap_input_mantissa & ap_mask;
uint32_t counter_trunc;
uint32_t temp;
// Go through the bits
for (counter_trunc = 0; counter_trunc < number_of_trunc_bits;
counter_trunc++)
{
temp = temp_shift_a & 1;
if (temp == 1)
{
error_value += temp_shift_b & ap_mask;
}
temp_shift_a >>= 1;
temp_shift_b <<= 1;
}
return error_value;
}

View file

@ -0,0 +1,219 @@
#include <cassert>
#include <iostream>
#include "kernel_approximation_error_term.cu"
#include "kernel_approximation_multiplication.h"
#include "kernel_helper_functions.h"
// Includes accumulation too...
__global__ void kernel_approximation_multiplication(
float* __restrict__ input_pointer, float* __restrict__ weight_pointer,
float* __restrict__ output_pointer, uint64_t pattern_dim,
uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim,
uint64_t input_channel_dim, size_t max_threadable_tasks,
uint64_t input_index_scale, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask,
size_t block_dim_c0, size_t block_dim_c1, size_t block_dim_c2) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_threadable_tasks) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t feature_id = idx / block_dim_c1;
idx -= feature_id * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
float* weight_pointer_sub = weight_pointer + feature_id * input_channel_dim;
float* input_pointer_sub = input_pointer +
pattern_id * input_channel_dim * x_dim * y_dim +
position_x * y_dim + position_y;
float* output_pointer_sub =
output_pointer + pattern_id * feature_dim * x_dim * y_dim +
feature_id * x_dim * y_dim + position_x * y_dim + position_y;
*output_pointer_sub = 0.0;
size_t counter;
for (counter = 0; counter < input_channel_dim; counter++) {
*output_pointer_sub += gpu_approximation_multiplication_function(
weight_pointer_sub[counter],
input_pointer_sub[counter * input_index_scale], number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask);
}
}
};
// Only x = a*b
__global__ void kernel_approximation_pure_multiplication(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
phxy_memory_out[idx] = gpu_approximation_multiplication_function(
phxy_memory_a[idx], phxy_memory_b[idx], number_of_frac_bits,
approximation_enable, number_of_trunc_bits, ap_mask);
}
};
__device__ float gpu_approximation_multiplication_function(
float weight, float input, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits,
uint32_t ap_mask) {
float weight_copy = weight;
float input_copy = input;
uint32_t* weight_pointer_mod = (uint32_t*)&weight_copy;
uint32_t* input_pointer_mod = (uint32_t*)&input_copy;
// Calculate the new sign
uint32_t sign_temp =
(*weight_pointer_mod & 0x80000000) ^ (*input_pointer_mod & 0x80000000);
// Extract the exponent
uint32_t ap_input_exponent = (*input_pointer_mod << 1) >> 24;
uint32_t ap_weight_exponent = (*weight_pointer_mod << 1) >> 24;
// Cast and "normalize"
uint64_t shift_value = 32 - number_of_frac_bits;
uint32_t ap_input_mantissa =
((*input_pointer_mod << 8) | 0x80000000) >> shift_value;
uint32_t ap_weight_mantissa =
((*weight_pointer_mod << 8) | 0x80000000) >> shift_value;
// Make the zero -g-r-e-a-t- correct again
if (input == 0) {
ap_input_mantissa = 0;
}
if (weight == 0) {
ap_weight_mantissa = 0;
}
// res = x*y
uint64_t ap_result = static_cast<uint64_t>(ap_input_mantissa) *
static_cast<uint64_t>(ap_weight_mantissa);
uint32_t temp;
// --------------------------------------------
// Approx
// --------------------------------------------
if (approximation_enable == true) {
// Go through the vector values
temp = gpu_error_term(ap_weight_mantissa, ap_input_mantissa, ap_mask,
number_of_trunc_bits);
if (temp > ap_result) {
ap_result = 0;
} else {
ap_result -= temp;
}
}
// Cast from int to float
float output = static_cast<float>(ap_result);
if (ap_result == 0) {
output = 0.0;
} else {
uint32_t* output_pointer_mod = (uint32_t*)&output;
uint32_t ap_output_exponent = (*output_pointer_mod << 1) >> 24;
ap_output_exponent -= 2 * number_of_frac_bits;
temp = ap_input_exponent + ap_weight_exponent + ap_output_exponent;
if (temp > 252) {
ap_output_exponent = temp - 252;
} else {
// Here I try to catch the case that the new exponent is too small
ap_output_exponent = 0;
}
// Remove the old exponent
*output_pointer_mod = (*output_pointer_mod << 9) >> 9;
// Install the new exponent
*output_pointer_mod += ap_output_exponent << 23;
// Add the sign back
*output_pointer_mod += sign_temp;
}
return output;
};
void occupancy_kernel_approximation_multiplication(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_approximation_multiplication, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_approximation_multiplication:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};
// ----------------------------------------------------------------
void occupancy_kernel_approximation_pure_multiplication(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_approximation_pure_multiplication, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_approximation_multiplication:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,35 @@
#ifndef KERNEL_APPROXIMATION_MULTIPLICATION
#define KERNEL_APPROXIMATION_MULTIPLICATION
#include <vector>
__global__ void kernel_approximation_multiplication(
float* __restrict__ input_pointer, float* __restrict__ weight_pointer,
float* __restrict__ output_pointer, uint64_t pattern_dim,
uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim,
uint64_t input_channel_dim, size_t max_threadable_tasks,
uint64_t input_index_scale, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask,
size_t block_dim_c0, size_t block_dim_c1, size_t block_dim_c2);
__global__ void kernel_approximation_pure_multiplication(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask,
size_t max_idx);
__device__ float gpu_approximation_multiplication_function(
float weight, float input, uint64_t number_of_frac_bits,
bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask);
void occupancy_kernel_approximation_multiplication(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
void occupancy_kernel_approximation_pure_multiplication(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug);
#endif /* KERNEL_APPROXIMATION_MULTIPLICATION */

View file

@ -0,0 +1,17 @@
#include <iostream>
#include "kernel_helper_functions.h"
void kernel_debug_plot(std::vector<size_t> output, bool display_debug) {
if (display_debug == true) {
std::cout << "grid x: " << output[0] << std::endl;
std::cout << "grid y: " << output[1] << std::endl;
std::cout << "grid z: " << output[2] << std::endl;
std::cout << "thread block x: " << output[3] << std::endl;
std::cout << "thread block y: " << output[4] << std::endl;
std::cout << "thread block z: " << output[5] << std::endl;
std::cout << "max_idx: " << output[6] << std::endl << std::endl;
}
return;
};

View file

@ -0,0 +1,7 @@
#ifndef KERNEL_HELPER_FUNCTIONS
#define KERNEL_HELPER_FUNCTIONS
#include <vector>
void kernel_debug_plot(std::vector<size_t> output, bool display_debug);
#endif /* KERNEL_HELPER_FUNCTIONS */

View file

@ -0,0 +1,64 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_fill_with_h.h"
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
float* __restrict__ phxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t block_dim_c0,
size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] = h_memory[idx_h];
}
};
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_fill_with_h, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_fill_with_h:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,18 @@
#ifndef KERNEL_PHXY_FILL_WITH_H
#define KERNEL_PHXY_FILL_WITH_H
#include <vector>
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
float* __restrict__ phxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t block_dim_c0,
size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_FILL_WITH_H */

View file

@ -0,0 +1,73 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_fill_with_spike_selected_w.h"
__global__ void kernel_phxy_fill_with_spike_selected_w(
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
int64_t* __restrict__ spike_memory, size_t spike_time,
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
position_y;
if (*spike >= 0) {
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] =
weights_memory[*spike * weights_dim_c0 + idx_h];
} else {
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] = 0.0;
}
}
};
void occupancy_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_fill_with_spike_selected_w, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_fill_with_spike_selected_w:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
#define KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
#include <vector>
__global__ void kernel_phxy_fill_with_spike_selected_w(
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
int64_t* __restrict__ spike_memory, size_t spike_time,
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug);
#endif /* KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W */

View file

@ -0,0 +1,74 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_one_over_sum_into_pxy.h"
__global__ void kernel_phxy_one_over_sum_into_pxy(
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
size_t block_dim_c1, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t position_x = idx / block_dim_c1;
idx -= position_x * block_dim_c1;
size_t position_y = idx;
size_t offset_phxy_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_pxy_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
float temp = 0.0;
for (size_t idx_h = 0; idx_h < h_dim; idx_h++) {
temp += phxy_memory[offset_phxy_temp + idx_h * phxy_dim_c1];
}
if (temp > 1E-10) {
pxy_memory[offset_pxy_sum] = 1.0 / temp;
} else {
pxy_memory[offset_pxy_sum] = 0.0;
}
}
};
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_one_over_sum_into_pxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_one_over_sum_into_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
#define KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
#include <vector>
__global__ void kernel_phxy_one_over_sum_into_pxy(
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
size_t block_dim_c1, size_t max_idx);
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY */

View file

@ -0,0 +1,51 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_plus_phxy.h"
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
float* __restrict__ phxy_memory_b,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
phxy_memory_a[idx] += phxy_memory_b[idx];
}
};
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_phxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_plus_phxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PHXY_PLUS_PHXY
#define KERNEL_PHXY_PLUS_PHXY
#include <vector>
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
float* __restrict__ phxy_memory_b,
size_t max_idx);
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_PLUS_PHXY */

View file

@ -0,0 +1,70 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_plus_pxy.h"
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
size_t offset_h_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_h_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] +=
pxy_memory[offset_h_sum];
}
};
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_plus_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,16 @@
#ifndef KERNEL_PHXY_PLUS_PXY
#define KERNEL_PHXY_PLUS_PXY
#include <vector>
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_PLUS_PXY */

View file

@ -0,0 +1,53 @@
#include <cassert>
#include <iostream>
#include <vector>
#include "kernel_helper_functions.h"
#include "kernel_phxy_times_phxy_equals_phxy.h"
__global__ void kernel_phxy_times_phxy_equals_phxy(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
phxy_memory_out[idx] = phxy_memory_a[idx] * phxy_memory_b[idx];
}
};
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_times_phxy_equals_phxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_times_phxy_equals_phxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,15 @@
#ifndef KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
#define KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
#include <vector>
__global__ void kernel_phxy_times_phxy_equals_phxy(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, size_t max_idx);
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY */

View file

@ -0,0 +1,70 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_times_pxy.h"
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
size_t offset_h_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_h_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] *=
pxy_memory[offset_h_sum];
}
};
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_times_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_times_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_TIMES_PXY
#define KERNEL_PHXY_TIMES_PXY
#include <vector>
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_TIMES_PXY */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_plus_v.h"
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] += value;
}
};
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_plus_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_plus_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PXY_PLUS_V
#define KERNEL_PXY_PLUS_V
#include <vector>
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_PLUS_V */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_reciprocal.h"
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] = 1.0 / pxy_memory[idx];
}
};
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_reciprocal, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_reciprocal:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PXY_RECIPROCAL
#define KERNEL_PXY_RECIPROCAL
#include <vector>
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx);
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_RECIPROCAL */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_set_to_v.h"
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] = value;
}
};
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_set_to_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_set_to_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,13 @@
#ifndef KERNEL_PXY_SET_TO_V
#define KERNEL_PXY_SET_TO_V
#include <vector>
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_SET_TO_V */

View file

@ -0,0 +1,58 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_time_pxy.h"
// a *= b
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
float* __restrict__ pxy_memory_b,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory_a[idx] *= pxy_memory_b[idx];
}
};
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_time_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
size_t gpu_tuning_factor = 5;
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < thread_block_size)) {
thread_block_size = int(gpu_tuning_factor);
}
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_time_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,15 @@
#ifndef KERNEL_PXY_TIME_PXY
#define KERNEL_PXY_TIME_PXY
#include <vector>
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
float* __restrict__ pxy_memory_b,
size_t max_idx);
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIME_PXY */

View file

@ -0,0 +1,73 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_times_spike_selected_sxy.h"
__global__ void kernel_pxy_times_spike_selected_sxy(
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t position_x = idx / block_dim_c1;
idx -= position_x * block_dim_c1;
size_t position_y = idx;
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
position_y;
if (*spike >= 0) {
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
position_y] *=
sxy_memory[*spike * sxy_dim_c0 + position_x * sxy_dim_c1 +
position_y];
} else {
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
position_y] = 0;
}
}
};
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_pxy_times_spike_selected_sxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_times_spike_selected_sxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,18 @@
#ifndef KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
#define KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
#include <vector>
__global__ void kernel_pxy_times_spike_selected_sxy(
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx);
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_times_v.h"
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] *= value;
}
};
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_times_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_times_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,13 @@
#ifndef KERNEL_PXY_TIMES_V
#define KERNEL_PXY_TIMES_V
#include <vector>
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIMES_V */

View file

@ -0,0 +1,97 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_spike_generation.h"
__device__ size_t gpu_lower_bound(float* __restrict__ data_ptr,
size_t data_length, size_t data_ptr_stride,
float compare_to_value) {
size_t start_of_range = 0;
size_t length_of_range = data_length;
while (length_of_range != 0) {
size_t half_length = length_of_range >> 1;
size_t actual_position = start_of_range + half_length;
if (data_ptr[actual_position * data_ptr_stride] < compare_to_value) {
start_of_range = ++actual_position;
length_of_range -= half_length + 1;
} else
length_of_range = half_length;
}
return start_of_range;
};
__global__ void kernel_spike_generation(
float* __restrict__ input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* __restrict__ random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* __restrict__ output_pointer,
size_t output_dim_c0, size_t output_dim_c1, size_t output_dim_c2,
size_t x_dim, size_t y_dim, size_t spike_dim, size_t h_dim,
size_t block_dim_c0, size_t block_dim_c1, size_t block_dim_c2,
size_t max_threadable_tasks) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_threadable_tasks) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t position_spike = idx / block_dim_c1;
idx -= position_spike * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
float* p_ptr = input_pointer + pattern_id * input_dim_c0 +
position_x * input_dim_c2 + position_y;
int64_t* out_ptr = output_pointer + pattern_id * output_dim_c0 +
position_x * output_dim_c2 + position_y +
position_spike * output_dim_c1;
float* rand_ptr = random_values_pointer +
pattern_id * random_values_dim_c0 +
position_x * random_values_dim_c2 + position_y +
position_spike * random_values_dim_c1;
*out_ptr = gpu_lower_bound(p_ptr, h_dim, input_dim_c1, *rand_ptr);
}
};
void occupancy_kernel_spike_generation(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t spike_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * spike_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_spike_generation, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_spike_generation:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,21 @@
#ifndef KERNEL_SPIKE_GENERATION
#define KERNEL_SPIKE_GENERATION
#include <vector>
__global__ void kernel_spike_generation(
float* __restrict__ input_pointer, size_t input_dim_c0, size_t input_dim_c1,
size_t input_dim_c2, float* __restrict__ random_values_pointer,
size_t random_values_dim_c0, size_t random_values_dim_c1,
size_t random_values_dim_c2, int64_t* __restrict__ output_pointer,
size_t output_dim_c0, size_t output_dim_c1, size_t output_dim_c2,
size_t x_dim, size_t y_dim, size_t spike_dim, size_t h_dim,
size_t block_dim_c0, size_t block_dim_c1, size_t block_dim_c2,
size_t max_threadable_tasks);
void occupancy_kernel_spike_generation(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t spike_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_SPIKE_GENERATION */

View file

@ -0,0 +1,23 @@
# %%
# pip install pybind11-stubgen
from pybind11_stubgen import ModuleStubsGenerator # type: ignore
import glob
def process(module_name: str) -> None:
module = ModuleStubsGenerator(module_name)
module.parse()
module.write_setup_py = False
with open(module_name + ".pyi", "w") as fp:
fp.write("#\n# AUTOMATICALLY GENERATED FILE, DO NOT EDIT!\n#\n\n")
fp.write("\n".join(module.to_lines()))
Files = glob.glob("*.so")
for fid in Files:
Idx: int = fid.find(".")
module_name: str = fid[:Idx]
print("Processing: " + module_name)
process(module_name)

View file

@ -0,0 +1,767 @@
import torch
import math
import random
from PyTestKernel import TestKernel
# TODO: kernel_phxy_plus_pxy, kernel_phxy_times_pxy,
# kernel_phxy_fill_h, kernel_phxy_one_over_sum_into_pxy,
# test_kernel_phxy_fill_with_spike_selected_w => 4D index
# pxy = number_of_pattern * dim_x * dim_y
# phxy = number_of_pattern * h_dim * dim_x * dim_y
# sxy = s_dim * dim_x * dim_y
def test_kernel_pxy_times_spike_selected_sxy(
h_dim,
s_dim,
number_of_pattern,
dim_x,
dim_y,
display_debug,
spike_time,
number_of_spikes,
):
print("test_kernel_pxy_times_spike_selected_sxy")
# void test_kernel_pxy_times_spike_selected_sxy(
# size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
# bool display_debug, int64_t pxy_memory_addr, int64_t sxy_memory_addr,
# int64_t spike_memory_addr, size_t spike_time, size_t spike_dim_c0,
# size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
# size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1);
memory_pxy = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_sxy = torch.rand(
(s_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_spikes = (
torch.rand(
(number_of_pattern, number_of_spikes, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
* float(s_dim)
).type(dtype=torch.int64)
pxy_dim_c0 = int(dim_x * dim_y)
pxy_dim_c1 = int(dim_y)
sxy_dim_c0 = int(dim_x * dim_y)
sxy_dim_c1 = int(dim_y)
spike_dim_c0 = int(number_of_spikes * dim_x * dim_y)
spike_dim_c1 = int(dim_x * dim_y)
spike_dim_c2 = int(dim_y)
memory_pxy_copy = memory_pxy.clone()
memory_sxy_copy = memory_sxy.clone()
memory_spikes_copy = memory_spikes.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_times_spike_selected_sxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
memory_pxy.data_ptr(),
memory_sxy.data_ptr(),
memory_spikes.data_ptr(),
spike_time,
spike_dim_c0,
spike_dim_c1,
spike_dim_c2,
pxy_dim_c0,
pxy_dim_c1,
sxy_dim_c0,
sxy_dim_c1,
)
for p in range(0, memory_spikes_copy.shape[0]):
for x in range(0, memory_spikes_copy.shape[2]):
for y in range(0, memory_spikes_copy.shape[3]):
spike = memory_spikes_copy[p, spike_time, x, y]
if spike >= 0:
memory_pxy_copy[p, x, y] *= memory_sxy_copy[spike, x, y]
else:
memory_pxy_copy[p, x, y] = 0.0
print(f"difference: {torch.abs(memory_pxy - memory_pxy_copy).max():.4e}")
print()
def test_kernel_phxy_fill_with_spike_selected_w(
h_dim,
s_dim,
number_of_pattern,
dim_x,
dim_y,
display_debug,
spike_time,
number_of_spikes,
):
print("test_kernel_phxy_fill_with_spike_selected_w")
# void test_kernel_phxy_fill_with_spike_selected_w(
# size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
# bool display_debug, size_t spike_time, size_t weights_dim_c0,
# size_t spike_dim_c0, size_t spike_dim_c1, size_t spike_dim_c2,
# size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2,
# int64_t phxy_memory_addr, int64_t weight_memory_addr,
# int64_t spike_memory_addr);
memory_phxy = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_w = torch.rand(
(s_dim, h_dim),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_spikes = (
torch.rand(
(number_of_pattern, number_of_spikes, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
* float(s_dim)
).type(dtype=torch.int64)
phxy_dim_c0 = int(h_dim * dim_x * dim_y)
phxy_dim_c1 = int(dim_x * dim_y)
phxy_dim_c2 = int(dim_y)
spike_dim_c0 = int(number_of_spikes * dim_x * dim_y)
spike_dim_c1 = int(dim_x * dim_y)
spike_dim_c2 = int(dim_y)
weights_dim_c0 = int(h_dim)
memory_phxy_copy = memory_phxy.clone()
memory_w_copy = memory_w.clone()
memory_spikes_copy = memory_spikes.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_fill_with_spike_selected_w(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
spike_time,
weights_dim_c0,
spike_dim_c0,
spike_dim_c1,
spike_dim_c2,
phxy_dim_c0,
phxy_dim_c1,
phxy_dim_c2,
memory_phxy.data_ptr(),
memory_w.data_ptr(),
memory_spikes.data_ptr(),
)
for p in range(0, memory_spikes_copy.shape[0]):
for x in range(0, memory_spikes_copy.shape[2]):
for y in range(0, memory_spikes_copy.shape[3]):
spike = memory_spikes_copy[p, spike_time, x, y]
if spike >= 0:
memory_phxy_copy[p, :, x, y] = memory_w_copy[spike, :]
else:
memory_phxy_copy[p, :, x, y] = 0.0
print(f"difference: {torch.abs(memory_phxy - memory_phxy_copy).max():.4e}")
print()
def test_kernel_phxy_one_over_sum_into_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_phxy_one_over_sum_into_pxy")
# void test_kernel_phxy_one_over_sum_into_pxy(
# size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
# bool display_debug, size_t phxy_dim_c0, size_t phxy_dim_c1,
# size_t phxy_dim_c2, size_t pxy_dim_c0, size_t pxy_dim_c1,
# int64_t phxy_memory_addr, int64_t pxy_memory_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_b = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
pxy_dim_c0 = int(dim_x * dim_y)
pxy_dim_c1 = int(dim_y)
phxy_dim_c0 = int(h_dim * dim_x * dim_y)
phxy_dim_c1 = int(dim_x * dim_y)
phxy_dim_c2 = int(dim_y)
memory_a_copy = memory_a.clone()
memory_b_copy = memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_one_over_sum_into_pxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
phxy_dim_c0,
phxy_dim_c1,
phxy_dim_c2,
pxy_dim_c0,
pxy_dim_c1,
memory_a.data_ptr(),
memory_b.data_ptr(),
)
memory_temp_copy = memory_a_copy.sum(dim=1)
memory_b_copy = torch.where(memory_temp_copy > 1e-10, 1.0 / memory_temp_copy, 0.0)
print(
"Remember: \nAn error of 0 is very unlikely due to different \nrandom order of values for the sum."
)
print(f"difference: {torch.abs(memory_b - memory_b_copy).max():.4e}")
print()
def test_kernel_phxy_fill_with_h(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_phxy_fill_with_h")
# void test_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, size_t phxy_dim_c0,
# size_t phxy_dim_c1, size_t phxy_dim_c2,
# int64_t h_memory_addr,
# int64_t phxy_memory_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_h = torch.rand(
(h_dim),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
phxy_dim_c0 = int(h_dim * dim_x * dim_y)
phxy_dim_c1 = int(dim_x * dim_y)
phxy_dim_c2 = int(dim_y)
memory_a_copy = memory_a.clone()
memory_h_copy = memory_h.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_fill_with_h(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
phxy_dim_c0,
phxy_dim_c1,
phxy_dim_c2,
memory_h.data_ptr(),
memory_a.data_ptr(),
)
for p in range(0, memory_a_copy.shape[0]):
for x in range(0, memory_a_copy.shape[2]):
for y in range(0, memory_a_copy.shape[3]):
memory_a_copy[p, :, x, y] = memory_h_copy
print(f"difference: {torch.abs(memory_a - memory_a_copy).max():.4e}")
print()
def test_kernel_phxy_plus_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_phxy_plus_pxy")
# void test_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, size_t phxy_dim_c0,
# size_t phxy_dim_c1, size_t phxy_dim_c2,
# size_t pxy_dim_c0, size_t pxy_dim_c1,
# int64_t phxy_memory_addr,
# int64_t pxy_memory_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_b = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
pxy_dim_c0 = int(dim_x * dim_y)
pxy_dim_c1 = int(dim_y)
phxy_dim_c0 = int(h_dim * dim_x * dim_y)
phxy_dim_c1 = int(dim_x * dim_y)
phxy_dim_c2 = int(dim_y)
memory_a_copy = memory_a.clone()
memory_b_copy = memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_plus_pxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
phxy_dim_c0,
phxy_dim_c1,
phxy_dim_c2,
pxy_dim_c0,
pxy_dim_c1,
memory_a.data_ptr(),
memory_b.data_ptr(),
)
memory_a_copy += memory_b_copy.unsqueeze(1)
print(f"difference: {torch.abs(memory_a - memory_a_copy).max():.4e}")
print()
def test_kernel_phxy_times_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_phxy_times_pxy")
# void test_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, size_t phxy_dim_c0,
# size_t phxy_dim_c1, size_t phxy_dim_c2,
# size_t pxy_dim_c0, size_t pxy_dim_c1,
# int64_t phxy_memory_addr,
# int64_t pxy_memory_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_b = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
pxy_dim_c0 = int(dim_x * dim_y)
pxy_dim_c1 = int(dim_y)
phxy_dim_c0 = int(h_dim * dim_x * dim_y)
phxy_dim_c1 = int(dim_x * dim_y)
phxy_dim_c2 = int(dim_y)
memory_a_copy = memory_a.clone()
memory_b_copy = memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_times_pxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
phxy_dim_c0,
phxy_dim_c1,
phxy_dim_c2,
pxy_dim_c0,
pxy_dim_c1,
memory_a.data_ptr(),
memory_b.data_ptr(),
)
memory_a_copy *= memory_b_copy.unsqueeze(1)
print(f"difference: {torch.abs(memory_a - memory_a_copy).max():.4e}")
print()
def test_kernel_phxy_times_phxy_equals_phxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_phxy_times_phxy_equals_phxy")
# void test_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
# size_t number_of_pattern,
# size_t h_dim, bool display_debug,
# int64_t phxy_memory_a_addr,
# int64_t phxy_memory_b_addr,
# int64_t phxy_memory_out_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_b = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_out = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_a_copy = memory_a.clone()
memory_b_copy = memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_times_phxy_equals_phxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
memory_a.data_ptr(),
memory_b.data_ptr(),
memory_out.data_ptr(),
)
memory_out_copy = memory_a_copy * memory_b_copy
print(f"difference: {torch.abs(memory_out - memory_out_copy).max():.4e}")
print()
def test_kernel_phxy_plus_phxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_time_pxy")
# void test_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug,
# int64_t phxy_memory_a_addr,
# int64_t phxy_memory_b_addr);
memory_a = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_b = torch.rand(
(number_of_pattern, h_dim, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
memory_a_copy = memory_a.clone()
memory_b_copy = memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_phxy_plus_phxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
memory_a.data_ptr(),
memory_b.data_ptr(),
)
memory_a_copy += memory_b_copy
print(f"difference: {torch.abs(memory_a - memory_a_copy).max():.4e}")
print()
def test_kernel_pxy_time_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_time_pxy")
# void test_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, int64_t pxy_memory_a_addr,
# int64_t pxy_memory_b_addr);
epsilon_memory_a = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
epsilon_memory_b = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
epsilon_memory_a_copy = epsilon_memory_a.clone()
epsilon_memory_b_copy = epsilon_memory_b.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_time_pxy(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
epsilon_memory_a.data_ptr(),
epsilon_memory_b.data_ptr(),
)
epsilon_memory_a_copy *= epsilon_memory_b_copy
print(
f"difference: {torch.abs(epsilon_memory_a - epsilon_memory_a_copy).max():.4e}"
)
print()
def test_kernel_pxy_times_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_times_v")
# void test_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, float value,
# int64_t pxy_memory_addr);
epsilon_memory = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
epsilon_memory_copy = epsilon_memory.clone()
value = float(math.pi)
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_times_v(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
value,
epsilon_memory.data_ptr(),
)
epsilon_memory_copy = epsilon_memory_copy * value
print(f"difference: {torch.abs(epsilon_memory - epsilon_memory_copy).max():.4e}")
print()
def test_kernel_pxy_plus_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_plus_v")
# void test_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, float value,
# int64_t pxy_memory_addr);
epsilon_memory = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
epsilon_memory_copy = epsilon_memory.clone()
value = float(math.pi)
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_plus_v(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
value,
epsilon_memory.data_ptr(),
)
epsilon_memory_copy = epsilon_memory_copy + value
print(f"difference: {torch.abs(epsilon_memory - epsilon_memory_copy).max():.4e}")
print()
def test_kernel_pxy_set_to_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_set_to_v")
# void test_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, float value,
# int64_t pxy_memory_addr);
set_value = float(math.pi)
epsilon_memory = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_set_to_v(
dim_x,
dim_y,
number_of_pattern,
h_dim,
display_debug,
set_value,
epsilon_memory.data_ptr(),
)
print(f"difference: {torch.abs(epsilon_memory - set_value).max():.4e}")
print()
def test_kernel_pxy_reciprocal(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
):
print("test_kernel_pxy_reciprocal")
# void test_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
# size_t number_of_pattern, size_t h_dim,
# bool display_debug, int64_t pxy_memory_addr);
epsilon_memory = torch.rand(
(number_of_pattern, dim_x, dim_y),
dtype=torch.float32,
device=torch.device("cuda:0"),
)
epsilon_memory_copy = epsilon_memory.clone()
my_kernels = TestKernel()
my_kernels.test_kernel_pxy_reciprocal(
dim_x, dim_y, number_of_pattern, h_dim, display_debug, epsilon_memory.data_ptr()
)
epsilon_memory_copy = 1.0 / epsilon_memory_copy
print(f"difference: {torch.abs(epsilon_memory - epsilon_memory_copy).max():.4e}")
print()
if __name__ == "__main__":
input_set = 0
for test_id in range(0, 13):
print(f"Test-ID: {test_id}")
number_of_spikes: int = int(1600)
spike_time: int = int(random.random() * number_of_spikes)
if input_set == 0:
h_dim: int = int(32)
s_dim: int = int(1 * 5 * 5)
number_of_pattern: int = int(24)
dim_x: int = int(20)
dim_y: int = int(20)
display_debug: int = bool(False)
else:
h_dim = int(10)
s_dim = int(32 * 20 * 20)
number_of_pattern = int(24)
dim_x = int(1)
dim_y = int(1)
display_debug = bool(False)
if test_id == 0:
test_kernel_pxy_reciprocal(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 1:
test_kernel_pxy_set_to_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 2:
test_kernel_pxy_plus_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 3:
test_kernel_pxy_times_v(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 4:
test_kernel_pxy_time_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 5:
test_kernel_phxy_plus_phxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 6:
test_kernel_phxy_times_phxy_equals_phxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 7:
test_kernel_phxy_times_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 8:
test_kernel_phxy_plus_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 9:
test_kernel_phxy_fill_with_h(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 10:
test_kernel_phxy_one_over_sum_into_pxy(
h_dim, s_dim, number_of_pattern, dim_x, dim_y, display_debug
)
elif test_id == 11:
test_kernel_phxy_fill_with_spike_selected_w(
h_dim,
s_dim,
number_of_pattern,
dim_x,
dim_y,
display_debug,
spike_time,
number_of_spikes,
)
elif test_id == 12:
test_kernel_pxy_times_spike_selected_sxy(
h_dim,
s_dim,
number_of_pattern,
dim_x,
dim_y,
display_debug,
spike_time,
number_of_spikes,
)